【題目】某商場銷售10A型和20B型加濕器的利潤為2500元,銷售20A型和10B型加濕器的利潤為2000

(1)求每臺A型加濕器和B型加濕器的銷售利潤;

(2)該商店計劃一次購進兩種型號的加濕器共100臺,其中B型加濕器的進貨量不超過A型加濕器的2倍,設(shè)購進A型加濕器x臺.這100臺加濕器的銷售總利潤為y

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店應(yīng)怎樣進貨才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺加濕器銷售總利潤最大的進貨方案.

【答案】(1)每臺A型加濕器和B型加濕器的銷售利潤分別為50元,100元.(2)①y=10000-50x;②A34臺時,利潤最大,最大值為:8300元;(3)①m=50時,y=10000,此時x3470間任意整數(shù)均可;②A型進貨70臺,B型進貨30臺;③A型進貨30臺,B型進貨70臺.

【解析】

(1)設(shè)每臺A型加濕器和B型加濕器的銷售利潤分別為x元、y元,然后根據(jù)題意列出一元二次方程組解答即可;

2)①據(jù)題意得即可確定y關(guān)于x的函數(shù)關(guān)系式;

②先根據(jù)題意列不等式求出x的范圍,再根據(jù)一次函數(shù)的增減性解答即可;

3)根據(jù)題意列出函數(shù)數(shù)關(guān)系式,分以下三種情況①0<m<50,②m=50,③ 50 <m < 100時,m-50 >0分別進行求解即可.

1)解設(shè)每臺A型加濕器和B型加濕器的銷售利潤分別為x元、y元,

由題意得:,解得:,

即每臺A型加濕器和B型加濕器的銷售利潤分別為50元,100元.

2)①據(jù)題意得即可確定y關(guān)于x的函數(shù)關(guān)系式為y=50x+100100-x=10000-50x;

②由題意得,解得:,

-50<0,

yx的增大而減小,

∴當(dāng)x=34時,y取最大值,最大值為:8300元.

3)由題意得:y=(50+m)x+100100-x=10000+(m-50)x,

其中,

①當(dāng)m-50=0時,即m=50時,y=10000,此時x3470間任意整數(shù)均可;

②當(dāng)m-50>0時,即100>m>50時,yx增大而增大,此時x= 70時,銷售利潤最大,即A型進貨70臺,B型進貨30臺;

③當(dāng)m-50<0時,即0<m<50時,yx增大而減小,此時x= 30時,銷售利潤最大,即A型進貨30臺,B型進貨70臺.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,過點C作直線CFAD

(問題)如圖,過點D作直線DGAB交直線CF于點E,連結(jié)AE,求證:ABDE

(探究)如圖,在線段AD上任取一點P,過點P作直線PGAB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.

(應(yīng)用)在探究的條件下,設(shè)PEAC于點M.若點PAD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作一個角”的尺規(guī)作圖過程.

已知:平面內(nèi)一點A

求作:,使得

作法:如圖,

1)作射線;

2)在射線取一點O,以O為圓心,為半徑作圓,與射線相交于點C;

3)以C為圓心,C為半徑作弧,與交于點D,作射線

即為所求的角.

請回答:該尺規(guī)作圖的依據(jù)是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點A、BC在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。

A.π2B.πC.π2D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,點M,N分別在線段AC,AB上,將△ANM沿直線MN折疊,使點A的對應(yīng)點D恰好落在線段BC上,若△DCM為直角三角形時,則AM的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點A逆時針旋轉(zhuǎn)α(0<α<120°)得到,BC,AC分別交于點D,E.設(shè),的面積為,則的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,動點從點開始沿邊向點以每秒1個單位長度的速度運動,動點從點開始沿邊向點以每秒2個單位長度的速度運動,過點,交于點,連接.點分別從點同時出發(fā),當(dāng)其中一點到達終點時,另一點也隨之停止運動,設(shè)運動時間為

1)如圖①,直接用含的代數(shù)式分別表示:   ______,

2)如圖②,

①當(dāng)_____秒時,四邊形為平行四邊形.

②是否存在的值,使四邊形為菱形?若存在,寫出的值;若不存在,請求出當(dāng)點的速度(勻速運動)變?yōu)槊棵攵嗌賯單位長度時,才能使四邊形在某一時刻成為菱形?

3)設(shè)的外接圓面積為,求出的函數(shù)關(guān)系式,并判斷當(dāng)最小時,的外接圓與直線的位置關(guān)系,并且說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點為,直線與拋物線交于點(在點的左側(cè))

1)求點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段及拋物線在兩點之間的部分圍成的封閉區(qū)域(不含邊界)記為

①當(dāng)時,結(jié)合函數(shù)圖象,直接寫出區(qū)域內(nèi)的整點個數(shù);

②如果區(qū)域內(nèi)有2個整點,請求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD⊙O的內(nèi)接四邊形,BC⊙O的直徑,OE⊥BCAB于點E,若BE=2AE,則∠ADC =_________°

查看答案和解析>>

同步練習(xí)冊答案