【題目】 推理填空

已知:如圖所示,點BC,E在同一條直線上,ABCD,∠1=2,∠3=4,求證:ADBE

證明:∵ABCD(已知)

∴∠4=____________

∵∠3=4(已知)∴∠3=____________

∴∠1=2(已知)∴∠1+CAF=2+CAF(等式的性質(zhì))

即∠BAF=DAC

∴∠3=______(等量代換)

ADBE______

【答案】BAE;兩直線平行,同位角相等;BAE;等量代換;DAC;內(nèi)錯角相等,兩直線平行.

【解析】

根據(jù)已知條件和解題思路,利用平行線的性質(zhì)和判定填空.

解:ADBE,理由如下:

ABCD(已知),

∴∠4=BAE(兩直線平行,同位角相等);

∵∠3=4(已知),

∴∠3=BAE(等量代換);

∵∠1=2(已知),

∴∠1+CAF=2+CAF(等式的性質(zhì)),

即∠BAF=DAC,

∴∠3=DAC(等量代換),

ADBE(內(nèi)錯角相等,兩直線平行).

故答案為:BAE;兩直線平行,同位角相等;BAE;等量代換;DAC;內(nèi)錯角相等,兩直線平行.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系中,拋物線y=ax2+bx+3x軸的兩個交點分別為A(﹣3,0),B(1,0),與y軸的交點為D,對稱軸與拋物線交于點C,與x軸負半軸交于點H.

(1)求拋物線的表達式;

(2)點E,F(xiàn)分別是拋物線對稱軸CH上的兩個動點(點E在點F上方),且EF=1,求使四邊形BDEF的周長最小時的點E,F(xiàn)坐標及最小值;

(3)如圖2,點P為對稱軸左側(cè),x軸上方的拋物線上的點,PQ⊥AC于點Q,是否存在這樣的點P使△PCQ△ACH相似?若存在請求出點P的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地開往B地,全程800km;所行的路程與時間的函數(shù)圖像如圖所示,下列問題:①乙車比甲車早出發(fā)2h;②甲車追上乙車時行駛了300km;③乙車的速度小于甲車速度;④甲車跑完全程比乙車跑完全程少用3h;以上正確的序號是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為正六邊形ABCDEF的中心,點MAF中點,以點O為圓心,以OM的長為半徑畫弧得到扇形MON,點NBC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 計算:

12x3-x2--x22-3x);

2)(2x-5)(3x+2);

3;

4)用乘法公式簡便計算:2002-400×199+1992

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知D,E分別為ABC的邊AB,BC上兩點,點A,C,E在⊙D上,點B,D在⊙E上.F上一點,連接FE并延長交AC的延長線于點N,交AB于點M.

(1)若∠EBDα,請將∠CAD用含α的代數(shù)式表示;

(2)若EM=MB,請說明當∠CAD為多少度時,直線EF為⊙D的切線;

(3)在(2)的條件下,若AD=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+2x+cx軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.

(1)求直線和拋物線的表達式;

(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,PDC為直角三角形?請直接寫出所有滿足條件的t的值;

(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最?若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費的方法按月計算每戶家庭的電費,分兩檔收費:第一檔是當月用電量不超過240度時實行基礎電價;第二檔是當用電量超過240度時,其中的240度仍按照基礎電價計費,超過的部分按照提高電價收費.設每個家庭月用電量為x 度時,應交電費為y 元.具體收費情況如折線圖所示,請根據(jù)圖象回答下列問題:

(1)“基礎電價____________ 度;

(2)求出當x240 時,y與x的函數(shù)表達式;

(3)若紫豪家六月份繳納電費132元,求紫豪家這個月用電量為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,設一質(zhì)點MP0(1,0)處向上運動1個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處,……如此繼續(xù)運動下去.設Pn(xnyn),n=1、2、3、……,則x1x2+……+x2014x2015的值為(

A. 1 B. 3 C. -1 D. 2015

查看答案和解析>>

同步練習冊答案