【題目】已知開口向上的拋物線y=ax2+bx+c與x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h的最大值.
(4)設(shè)E(-,0),當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說明理由.
【答案】(1)點(diǎn)C的坐標(biāo)為(0,﹣3a).(2)0<a≤;(3)1;(4)當(dāng)∠ACB=90°,在線段AC上存在點(diǎn)F,使得直線EF將△ABC的面積平分,點(diǎn)F的坐標(biāo)是(﹣,﹣).
【解析】
(1)由拋物線 y=ax2+bx+c過點(diǎn)A(﹣3,0),B(1,0),得出c與a的關(guān)系,即可得出C點(diǎn)坐標(biāo);
(2)利用已知得出△AOC∽△COB,進(jìn)而求出OC的長度,即可得出a的取值范圍;
(3)作DG⊥y軸于點(diǎn)G,延長DC交x軸于點(diǎn)H,得出拋物線的對稱軸為x=﹣1,進(jìn)而求出△DCG∽△HCO,得出OH=3,過B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HB sin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤,即可求出答案;
(4)連接CE,過點(diǎn)N作NP∥CD交y軸于P,連接EF,根據(jù)三角形的面積公式求出S△CAEF=S四邊形EFCB,根據(jù)NP∥CE,求出P(0,-2),設(shè)過N、P兩點(diǎn)的一次函數(shù)是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求出A、C兩點(diǎn)的直線的解析式,組成方程組求出即可.
(1)∵拋物線 y=ax2+bx+c過點(diǎn)A(﹣3,0),B(1,0),
∴消去b,得 c=﹣3a.
∴點(diǎn)C的坐標(biāo)為(0,﹣3a),
答:點(diǎn)C的坐標(biāo)為(0,﹣3a).
(2)當(dāng)∠ACB=90°時(shí),
∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,
∴∠ACO=∠OBC,
∴△AOC∽△COB,
∴,
即 OC2=AOOB,
∵AO=3,OB=1,
∴OC=,
∵∠ACB不小于90°,
∴OC≤,即﹣c≤,
由(1)得 3a≤,
∴a≤,
又∵a>0,
∴a的取值范圍為0<a≤,
答:系數(shù)a的取值范圍是0<a≤.
(3)作DG⊥y軸于點(diǎn)G,延長DC交x軸于點(diǎn)H,如圖.
∵拋物線 y=ax2+bx+c交x軸于A(﹣3,0),B(1,0).
∴拋物線的對稱軸為x=﹣1.
即﹣=﹣1,所以b=2a.
又由(1)有c=﹣3a.
∴拋物線方程為 y=ax2+2ax﹣3a,D點(diǎn)坐標(biāo)為(﹣1,﹣4a).
于是 CO=3a,GC=a,DG=1.
∵DG∥OH,
∴△DCG∽△HCO,
∴,即,得 OH=3,表明直線DC過定點(diǎn)H(3,0).
過B作BM⊥DH,垂足為M,即BM=h,
∴h=HB sin∠OHC=2 sin∠OHC.
∵0<CO≤,
∴0°<∠OHC≤30°,0<sin∠OHC≤.
∴0<h≤1,即h的最大值為1,
答:△BCD中CD邊上的高h的最大值是1.
(4)由(1)、(2)可知,當(dāng)∠ACB=90°時(shí),a=,CO=,
設(shè)AB的中點(diǎn)為N,連接CN,則N(﹣1,0),CN將△ABC的面積平分,
連接CE,過點(diǎn)N作NP∥CE交y軸于P,顯然點(diǎn)P在OC的延長線上,從而NP必與AC相交,設(shè)其交點(diǎn)為F,連接EF,
因?yàn)?/span>NP∥CE,所以S△CEF=S△CEN,
由已知可得NO=1,EO=,而NP∥CE,
∴PO=2CO=2,得P(0,-2),
設(shè)過N、P兩點(diǎn)的一次函數(shù)是y=kx+b,則,
解得:k=b=-2,
即y=-2(x+1),①
同理可得過A、C兩點(diǎn)的一次函數(shù)為x+y+3=0,②
解由①②組成的方程組得x=-,y=-,
故在線段AC上存在點(diǎn)F(-,-)滿足要求.
答:當(dāng)∠ACB=90°,在線段AC上存在點(diǎn)F,使得直線EF將△ABC的面積平分,點(diǎn)F的坐標(biāo)是(-,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為_______°;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)F為BC的中點(diǎn),且S△AOF=12 時(shí),OA的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測站點(diǎn)檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計(jì)了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計(jì)圖共統(tǒng)計(jì)了 天的空氣質(zhì)量情況;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是 ;
(3)從小源所在環(huán)保興趣小組4名同學(xué)(2名男同學(xué),2名女同學(xué))中,隨機(jī)選取兩名同學(xué)去該空氣質(zhì)量監(jiān)測站點(diǎn)參觀,則恰好選到一名男同學(xué)和一名女同學(xué)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com