【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個數(shù)是( 。

A. 5個 B. 4個 C. 3個 D. 2個

【答案】B

【解析】試題分析:根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用邊角邊證明△ABF△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得AM:EM=MD:AM=AD:AE=2,然后求出MD=2AM=4EM,判斷出正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出正確;過點MMN⊥ABN,求出MN、NB,然后利用勾股定理列式求出BM,過點MGH∥AB,過點OOK⊥GHK,然后求出OKMK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于兩點,與軸交于點,已知點的坐標(biāo)為

1)求反比例函數(shù)的解析式;

2)若點是反比例函數(shù)圖象上一點,過點軸于點,延長交直線于點,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個形狀、大小完全相同的長方形紙片圍成正方形,4個長方形紙片圍成如圖1所示的正方形,其涂色部分的面積是25;8個長方形紙片圍成如圖2所示的正方形,其涂色部分的面積是16;12個長方形紙片圍成如圖3所示的正方形,其涂色部分的面積是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點E,F,GH分別是邊AB,BCCDDA的中點,連接EF,FG,GHHE,若EH=2EF=2,則菱形ABCD的邊長為(

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦BC=2,點A是優(yōu)弧BC上一動點(不包括端點),ABC的高BD、CE相交于點F,連結(jié)ED.下列四個結(jié)論:

①∠A始終為60°;

②當(dāng)∠ABC=45°時,AE=EF;

③當(dāng)ABC為銳角三角形時,ED=

④線段ED的垂直平分線必平分弦BC.

其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當(dāng)t為何值時,射線PM是∠QPN巧分線;

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知燈塔M方圓一定范圍內(nèi)有鐳射輔助信號,一艘輪船在海上從南向北方向以一定的速度勻速航行,輪船在A處測得燈塔M在北偏東30°方向,行駛1小時后到達B處,此時剛好進入燈塔M的鐳射信號區(qū),測得燈塔M在北偏東45°方向,則輪船通過燈塔M的鐳射信號區(qū)的時間為(  )

A. 1)小時 B. +1)小時 C. 2小時 D. 小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,AB=5,AC=3,則BC邊上的中線AD的取值范圍是( ).

A. 2<AD<8B. 0<AD<8C. 1<AD<4D. 3<AD<5

查看答案和解析>>

同步練習(xí)冊答案