【題目】如圖,平面直角坐標(biāo)系中,拋物線y=x2﹣2x與x軸交于O、B兩點(diǎn),頂點(diǎn)為P,連接OP、BP,直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(Ⅰ)直接寫出點(diǎn)B坐標(biāo) ;判斷△OBP的形狀 ;
(Ⅱ)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點(diǎn)A,分別連接CP、DP;
(i)若拋物線向下平移m個單位長度,當(dāng)SPCD= SPOC時,求平移后的拋物線的頂點(diǎn)坐標(biāo);
(ii)在平移過程中,試探究SPCD和SPOD之間的數(shù)量關(guān)系,直接寫出它們之間的數(shù)量關(guān)系及對應(yīng)的m的取值范圍.

【答案】解:(Ⅰ)當(dāng)y=0時,x2﹣2x=0,解得x=0(舍)或x=2,即B點(diǎn)坐標(biāo)為(2,0),
∵拋物線y=x2﹣2x=(x﹣1)2﹣1,
∴P點(diǎn)坐標(biāo)為(1,﹣1),由勾股定理,得
OP2=(2﹣1)2+12=2,
∴OP2+BP2=OB2 , OP=BP,
∴△OBP是等腰直角三角形,
故答案為:(2,0);等腰直角三角形;
(Ⅱ)解:∵直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,
∴C(0,﹣4),D(4,0),當(dāng)x=1時,y=﹣3,即M(1,﹣3),
拋物線向下平移m個單位長度,解析式為y=(x﹣1)2﹣(1+m),P(1,﹣1﹣m),
∴PM=|﹣(1+m)+3|=|m﹣2|,
SPCD=SPMC+SPMD= PM|xP﹣xC|= |m﹣2|×4=2|m﹣2|,
(i)SPOC= AC|xP|= ×4×1=2,∵SPCD= SPOC , ∴SPCD=2|m﹣2|=2 ,解得m=2+ 或m=2﹣ ,∴P(1,﹣3﹣ )或(1,﹣3+ );
(ii)SPOD= OD|yP|= ×4×|1﹣(1+m)|=2|m+1|,
①當(dāng)m≥2時,SPCD=2|m﹣2|=2m﹣4,SPOD=2|m+1|=2m+2,∴SPOD﹣SPCD=6
②當(dāng)﹣1≤m<2時,SPCD=2|m﹣2=4﹣2m,SPOD=2|m+1|=2m+2,∴SPOD+SPCD=6
③當(dāng)m<﹣1時,SPCD=2|m﹣2|=4﹣2m,SPOD=2|m+1|=2﹣2m,∴SPOD﹣SPCD=6,
綜上所述:當(dāng)m≥2時,SPOD﹣SPCD=6;當(dāng)﹣1≤m<2時,SPOD+SPCD=6;當(dāng)m<﹣1時,SPOD﹣SPCD=6
【解析】(Ⅰ)根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得B點(diǎn)坐標(biāo),根據(jù)配方法,可得頂點(diǎn)坐標(biāo),根據(jù)勾股定理及勾股定理的逆定理,可得答案;(Ⅱ)根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得C,D,M點(diǎn)坐標(biāo),根據(jù)平移規(guī)律,可得P點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)間的距離較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PM的長,(i)根據(jù)面積的關(guān)系,可得關(guān)于m的方程,根據(jù)解方程,可得到頂點(diǎn)坐標(biāo);(ii)根據(jù)三角形的面積,可得答案.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點(diǎn)O,過點(diǎn)B作BPAC,過點(diǎn)C作CPBD,BP與CP相交于點(diǎn)P.

(1)判斷四邊形BPCO的形狀,并說明理由;

(2)若將平行四邊形ABCD改為菱形ABCD,其他條件不變,得到的四邊形BPCO是什么四邊形,并說明理由;

(3)若得到的是正方形BPCO,則四邊形ABCD是 .(選填平行四邊形、矩形、菱形、正方形中你認(rèn)為正確的一個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,∠BAD=105°,在BC,CD上分別找一點(diǎn)M、N,使得△AMN周長最小,則∠AMN+∠ANM的度數(shù)為 ( )

A. 100° B. 105° C. 120° D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運(yùn)動,你熱愛足球運(yùn)動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊(duì)共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊(duì)勝了(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,點(diǎn)DAB的中點(diǎn),點(diǎn)E為線段BC上的點(diǎn),連接DE,把△BDE沿著DE翻折得△B1DE

(1)當(dāng)A、D、B1C構(gòu)成的四邊形為平行四邊形,求DE的長;

(2)當(dāng)DB1AC時,求△DE B1和△ABC重疊部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程(1)=2;(2)5x﹣2=2x﹣(3﹣2x);(3)xy=5;(4)=﹣2;(5)x2﹣x=1;(6)x=0中一元一次方程有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線AB:y=﹣x+bx軸于點(diǎn)A(8,0),交y軸正半軸于點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo);

(2)如圖2,直線ACy軸負(fù)半軸于點(diǎn)C,AB=BC,P為線段AB上一點(diǎn),過點(diǎn)Py軸的平行線交直線AC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PQ的長為d,求dt之間的函數(shù)關(guān)系式;

(3)(2)的條件下,MCA延長線上一點(diǎn),且AM=CQ,在直線AC上方的直線AB上是否存在點(diǎn)N,使QMN是以QM為斜邊的等腰直角三角形?若存在,請求出點(diǎn)N的坐標(biāo)及PN的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船以每小時30海里的速度向北偏東75°方向航行,在點(diǎn)A處測得碼頭C在船的東北方向,航行40分鐘后到達(dá)B處,這時碼頭C恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭C的最近距離.(結(jié)果精確的0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上A、B、C三點(diǎn)對應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點(diǎn),點(diǎn)PA出發(fā),沿?cái)?shù)軸正方向以每秒1.5個單位長度的速度勻速運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動,且P、Q兩點(diǎn)同時出發(fā).

(1)a、b的值

(2)當(dāng)P運(yùn)動到線段OB的中點(diǎn)時,點(diǎn)Q運(yùn)動的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動速度

(3)當(dāng)P、Q兩點(diǎn)間的距離是6個單位長度時,求OP的長.

查看答案和解析>>

同步練習(xí)冊答案