【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫(xiě)出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線(xiàn)對(duì)稱(chēng)?若是,請(qǐng)用實(shí)線(xiàn)條畫(huà)出對(duì)稱(chēng)軸。
【答案】(1)如圖,△A1B1C1即為所求,頂點(diǎn)C1的坐標(biāo)為(1,1);
(2)如圖,△A2B2C2即為所求,頂點(diǎn)C2的坐標(biāo)為(5,1);
(3)△A1B1C1和△A2B2C2關(guān)于直線(xiàn)x=3對(duì)稱(chēng)如圖:
【解析】
試題(1)根據(jù)軸對(duì)稱(chēng)的性質(zhì)作出A、B、C關(guān)于y軸的對(duì)稱(chēng)點(diǎn),A1、B1、C1,順次連接畫(huà)圖,并找到坐標(biāo)即可.(2)根據(jù)平移的性質(zhì)將A、B、C按平移條件找出它的對(duì)應(yīng)點(diǎn)A2、B2、C2,順次連接畫(huà)圖,并找坐標(biāo)即可.(3)觀察圖象即可得△A1B1C1和△A2B2C2,關(guān)于直線(xiàn)x=3對(duì)稱(chēng).
試題解析:(1)如圖,各頂點(diǎn)的坐標(biāo)為:A1(0,4) B1 (2,2) C1(1,1);
(2)如圖,各頂點(diǎn)的坐標(biāo)為:A2 (6,4) B2 (4,2) C2(5,1);
(3)是關(guān)于某直線(xiàn)對(duì)稱(chēng),對(duì)稱(chēng)軸是直線(xiàn)x=3.如圖.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面內(nèi)四個(gè)點(diǎn)A,B,C,D.
(1)利用尺規(guī),按下面的要求作圖.要求:不寫(xiě)畫(huà)法,保留作圖痕跡,不必寫(xiě)結(jié)論.
①作射線(xiàn)AC;
②連接AB,BC,BD,線(xiàn)段BD與射線(xiàn)AC相交于點(diǎn)O;
③在線(xiàn)段AC上作一條線(xiàn)段CF,使CF=AC﹣BD.
(2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線(xiàn)段AB+BC>AC,得出這個(gè)結(jié)論的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別是吊車(chē)在吊一物品時(shí)的示意圖,已知吊車(chē)底盤(pán)CD的高度為2米,支架BC的長(zhǎng)為4米,且與地面成30°角,吊繩AB與支架BC的夾角為75°,吊臂AC與地面成75°角.
(1)求證:AB=AC
(2)求吊車(chē)的吊臂頂端A點(diǎn)距地面的高度是多少米?(保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線(xiàn),求∠A和∠CDB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣2,9).
(1)畫(huà)出△ABC,并求出AC所在直線(xiàn)的解析式.
(2)畫(huà)出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△A1B1C1 , 并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
我們知道,任意兩點(diǎn)關(guān)于它們所連線(xiàn)段的中點(diǎn)成中心對(duì)稱(chēng),在平面直角坐標(biāo)系中,任意兩點(diǎn)P(x1,y1)、Q(x2,y2)的對(duì)稱(chēng)中心的坐標(biāo)為(,).
觀察應(yīng)用:
(1)如圖,在平面直角坐標(biāo)系中,若點(diǎn)P1(0,﹣1)、P2(2,3)的對(duì)稱(chēng)中心是點(diǎn)A,則點(diǎn)A的坐標(biāo)為 ;
(2)另取兩點(diǎn)B(﹣1.6,2.1)、C(﹣1,0).有一電子青蛙從點(diǎn)P1處開(kāi)始依次關(guān)于點(diǎn)A、B、C作循環(huán)對(duì)稱(chēng)跳動(dòng),即第一次跳到點(diǎn)P1關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)P2處,接著跳到點(diǎn)P2關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)P3處,第三次再跳到點(diǎn)P3關(guān)于點(diǎn)C的對(duì)稱(chēng)點(diǎn)P4處,第四次再跳到點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)P5處,…則點(diǎn)P3、P8的坐標(biāo)分別為 、 .
拓展延伸:
(3)求出點(diǎn)P2012的坐標(biāo),并直接寫(xiě)出在x軸上與點(diǎn)P2012、點(diǎn)C構(gòu)成等腰三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D,E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論: ①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2 .
其中一定正確的是( )
A.②④
B.①③
C.①④
D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長(zhǎng)線(xiàn)段CB到E,使BE=AD,連接AE、AC.
【1】求證:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com