如圖,線段AC=n+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為S3;…;當(dāng)AB=n時(shí),△AME的面積記為Sn.當(dāng)n≥2時(shí),Sn﹣Sn﹣1=  ▲  
連接BE,

∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,
∴BE∥AM。∴△AME與△AMB同底等高。
∴△AME的面積=△AMB的面積。
∴當(dāng)AB=n時(shí),△AME的面積為,當(dāng)AB=n-1時(shí),△AME的面積為
∴當(dāng)n≥2時(shí),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.
(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);
(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形ABCD的對(duì)角線分別為12 cm、8 cm,則它的面積為          cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則EG2+FH2=    ▲   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

順次連接矩形四邊中點(diǎn)所得的四邊形一定是【   】
A.正方形B.矩形C.菱形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD的邊長(zhǎng)為8,正方形EFGH的邊長(zhǎng)為3,正方形EFGH可在線段AD上滑動(dòng). EC交AD于點(diǎn)M. 設(shè)AF=x,F(xiàn)M=y,△ECG的面積為s.
(1)求y與x之間的關(guān)系;
(2)求s與x之間的關(guān)系;
(3)求s的最大值和最小值;
(4)若放寬限制條件,使線段FG可在射線AD上滑動(dòng),直接寫出s與x之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形.小華同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH(見(jiàn)方案一),小麗同學(xué)沿矩形的對(duì)角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(見(jiàn)方案二).
(1)你能說(shuō)出小華、小麗所折出的菱形的理由嗎?
(2)請(qǐng)你通過(guò)計(jì)算,比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,AD =DC,求證:AC是∠DAB的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,給出了正方形ABCD的面積的四個(gè)表達(dá)式,其中錯(cuò)誤的是(  。
A.(x+a)(x+a)      B.x2+a2+2ax
C.(x-a)(x-a)D.(x+a)a+(x+a)x

查看答案和解析>>

同步練習(xí)冊(cè)答案