【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=的圖象在第二象限內(nèi)交于點A,過點A作AB⊥x軸于點B,OB=1.
(1)求該反比例函數(shù)的表達式;
(2)若點P是該反比例函數(shù)圖象上一點,且△PAB的面積為3,求點P的坐標.
【答案】(1);(2)(﹣3,1)或(1,﹣3).
【解析】
(1)先利用一次解析式確定A點坐標為(﹣1,3),然后把A點坐標代入y=中求出k得到反比例函數(shù)解析式;
(2)設P(t,﹣),利用三角形面積公式得到×3×|﹣+1|=3,然后解方程求出t,從而得到P點坐標.
(1)∵AB⊥x軸于點B,OB=1.
∴A點的橫坐標為﹣1,
當x=﹣1時,y=﹣x+2=3,則A(﹣1,3),
把A(﹣1,3)代入y=得k=﹣1×3=﹣3,
∴反比例函數(shù)解析式為;
(2)設P(t,﹣),
∵△PAB的面積為3,
∴×3×|﹣+1|=3,
解得t=﹣3或t=1,
∴P點坐標為(﹣3,1)或(1,﹣3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C三個城市位置如圖所示,A城在B城正南方向180 km處,C城在B城南偏東37°方向.已知一列貨車從A城出發(fā)勻速駛往B城,同時一輛客車從B城出發(fā)勻速駛往C城,出發(fā)1小時后,貨車到達P地,客車到達M地,此時測得∠BPM=26°,兩車又繼續(xù)行駛1小時,貨車到達Q地,客車到達N地,此時測得∠BNQ=45°,求兩車的速度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin26°≈,cos26°≈,tan26°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點P,使得∠BPC與∠A互補,其作法分別如下:
(甲)以A為圓心,AC長為半徑畫弧交AB于P點,則P即為所求;
(乙)作過B點且與AB垂直的直線l,作過C點且與AC垂直的直線,交l于P點,則P即為所求.
對于甲、乙兩人的作法,下列敘述何者正確?( )
A. 兩人皆正確 B. 兩人皆錯誤
C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點,點在線段上,點在軸上,將沿直線翻折,使點與點重合.若點在線段延長線上,且,點在軸上,點在坐標平面內(nèi),如果以點為頂點的四邊形是菱形,那么點有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點的坐標為,直線與軸相交于點,連結,拋物線沿射線方向平移得到拋物線,拋物線與直線交于點,設拋物線的頂點的橫坐標為.
(1)求拋物線的解析式(用含的式子表示);
(2)連結,當時,求點的坐標;
(3)點為軸上的動點,以為直角頂點的與相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點A與CD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點AB E,交BC于點F,邊AB折疊后與邊BC交于點G,設正方形ABCD的周長為m,的周長為n,則的值為( )
A.B.C.D.隨H點位置的變化而變化
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是2020年3月26日全國新冠疫情數(shù)據(jù)表,圖2是3月28日海外各國疫情統(tǒng)計表,圖3是中國和海外的病死率趨勢對比圖,根據(jù)這些圖表,選出下列說法中錯誤的一項( )
A.圖1顯示每天現(xiàn)有確診數(shù)的增加量=累計確診增加量-治愈人數(shù)增加量-死亡人數(shù)增加量.
B.圖2顯示美國累計確診人數(shù)雖然約是德國的兩倍,但每百萬人口的確診人數(shù)大約只有德國的一半.
C.圖2顯示意大利當前的治愈率高于西班牙.
D.圖3顯示大約從3月16日開始海外的病死率開始高于中國的病死率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸是直線x=﹣1,且過點(1,0).頂點位于第二象限,其部分圖象如圖4所示,給出以下判斷:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直線y=2x+2與拋物線y=ax2+bx+c兩個交點的橫坐標分別為x1,x2,則x1+x2+x1x2=5.其中正確的個數(shù)有( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩位同學參加數(shù)學綜合素質(zhì)測試,各項成績?nèi)缦卤恚海▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學生甲 | 93 | 93 | 89 | 90 |
學生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙同學成績的中位數(shù);
(2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計與概率,綜合與實踐的成績按4:3:1:2計算,那么甲、乙同學的數(shù)學綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com