精英家教網(wǎng)如圖,正方形ABCD(四個角都是直角,四條邊都相等)的邊長為1,AB,AD上各有一點P、Q,△APQ的周長為2,求∠PCQ.為了解決這個問題,我們在正方形外以BC和AB的延長線為邊作△CBE,使得△CBE≌△CDQ.
(1)△CBE可以看成是由△CDQ怎樣運動變化得到的?請你描述這一運動變化;
(2)圖中PQ與PE的長度是相等的.請你說明理由;
(3)請用(1)或(2)中的結論說明△PCQ≌△PCE;
(4)請用以上的結論,求∠PCQ的度數(shù).
分析:(1)△CBE可以看成是由△CDQ旋轉得到的.
(2)易知AQ=1-DQ=1-BE,AP=1-BP,又有△APQ的周長為2,可求出PQ=PE.
(3)根據(jù)SSS判定△PCQ≌△PCE.
(4)利用△PCQ≌△PCE得出∠PCQ=∠PCE,又有∠BCE=∠QCD,得出∠PCQ的度數(shù)是∠DCB度數(shù)的一半.
解答:解:(1)△CBE可以看成是由△CDQ沿逆時針旋轉90°得到的.

(2)∵AQ=1-DQ=1-BE,AP=1-BP,
又∵AP+AQ+PQ=2,
∴1-BE+1-BP+PQ=2,即2-PE+PQ=2,
∴PE=PQ.

(3)∵PE=PQ,QC=EC,PC=PC,
∴△PCQ≌△PCE(SSS);
(4)∵△PCQ≌△PCE,
∴∠PCQ=∠PCE,
又∵∠BCE=∠QCD,
∴∠QCD+∠PCB=∠PCQ,
又∵∠DCB=90°,
∴∠PCQ=
1
2
×90°=45°.
點評:本題考查了圖形的旋轉、全等三角形的判定、全等三角形的性質、正方形的性質等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案