【題目】已知某種水果的批發(fā)單價與批發(fā)量的函數(shù)關(guān)系如圖1所示.

1)請說明圖中、兩段函數(shù)圖象的實際意義;

2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量mkg)之間的函數(shù)關(guān)系式;在圖2的坐標系中畫出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果;

3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價之間的函數(shù)關(guān)系如圖3所示,該經(jīng)銷商擬每日售出60kg以上該種水果,且當日零售價不變,請你幫助該經(jīng)銷商設(shè)計進貨和銷售的方案,使得當日獲得的利潤最大.

【答案】(1)詳見解析;(2)詳見解析;(3)經(jīng)銷商應(yīng)批發(fā)80kg該種水果,日零售價定為6/kg,當日可獲得最大利潤160元.

【解析】

1)(2)中要注意變量的不同的取值范圍;

3)可根據(jù)圖中給出的信息,用待定系數(shù)的方法來確定函數(shù).然后根據(jù)函數(shù)的特點來判斷所要求的值.

解:(1)圖表示批發(fā)量不少于20kg且不多于60kg的該種水果,

可按5/kg批發(fā),

表示批發(fā)量高于60kg的該種水果,可按4/kg批發(fā);

2)由題意得:

函數(shù)圖象如圖所示.

由圖可知批發(fā)量超過60時,價格在4元中,

所以資金金額滿足240w300時,以同樣的資金可批發(fā)到較多數(shù)量的該種水果;

3)設(shè)日最高銷售量為xkgx60),日零售價為p,

設(shè)xpk+b,則由圖該函數(shù)過點(6,80),(740),

代入可得:x32040p,于是p ,

銷售利潤yx4)=﹣x802+160

x80時,y最大值160,

此時p6

即經(jīng)銷商應(yīng)批發(fā)80kg該種水果,日零售價定為6/kg

當日可獲得最大利潤160元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點為A(3,2),B(x,y)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;

(2)Cy軸上的點,且滿足△ABC的面積為10,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點C的對應(yīng)點E落在AB邊上,若AD2,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對博鰲論壇會的了解情況,某中學(xué)隨機抽取了部分學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果記作非常了解,了解,了解較少,不了解.四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計圖中所在的扇形的圓心角度數(shù)為______

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有1600名學(xué)生,請你估計對博鰲論壇會的了解情況為非常了解的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴重的燃油公交車,計劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點,連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+3的圖象分別交x軸、y軸于點B、點C,與反比例函數(shù)的圖象在第四象限的相交于點P,并且PAy軸于點A,已知A 0,﹣6),且SCAP18

1)求上述一次函數(shù)與反比例函數(shù)的表達式;

2)設(shè)Q是一次函數(shù)ykx+3圖象上的一點,且滿足△OCQ的面積是△BCO面積的2倍,求出點Q的坐標.

查看答案和解析>>

同步練習(xí)冊答案