【題目】某班有48位同學(xué),在一次數(shù)學(xué)檢測(cè)中,分?jǐn)?shù)只取整數(shù),統(tǒng)計(jì)其成績(jī),繪制出頻數(shù)分布直方圖(橫半軸表示分?jǐn)?shù),把50.5分到100.5分之間的分?jǐn)?shù)分成5組,組距是10分,縱半軸表示頻數(shù))如圖所示,從左到右的小矩形的高度比是1:3:6:4:2,則由圖可知,其中分?jǐn)?shù)在70.5~80.5之間的人數(shù)是(  )

A.9
B.18
C.12
D.6

【答案】B
【解析】解:由圖形可知,從左到右的小矩形的高度比是1:3:6:4:2,且總數(shù)為48,
即各范圍的人數(shù)分別為3,9,18,12,6.
所以分?jǐn)?shù)在70.5~80.5之間的人數(shù)是18人.
故選B.
由頻率直方圖上的小長(zhǎng)方形的高為頻數(shù),即高之和為總數(shù),知道高度比,即可算出個(gè)范圍的頻數(shù),即各個(gè)范圍的人數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x滿足等式(x+4)3=﹣27,則x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(2x2y3)2(xy)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動(dòng),決定開設(shè)A:籃球、B:乒乓球、C:踢毽子、D:跑步四種活動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 , 其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是度;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有學(xué)生1000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC是等腰直角三角形,ACB=90°,直角邊與正方形DEFG的邊長(zhǎng)均為2,且AC與DE在同一直線上,開始時(shí)點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定滿足(
A.對(duì)角線相等
B.對(duì)角線互相平分
C.對(duì)角線互相垂直
D.對(duì)角線相等且相互平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(x52+7的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣(x+123的頂點(diǎn)坐標(biāo)是( 。

A.1,﹣3B.1,3C.(﹣13D.(﹣1,﹣3

查看答案和解析>>

同步練習(xí)冊(cè)答案