【題目】某商品的進(jìn)價(jià)為每件40元,當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場調(diào)查,每降價(jià)1元,每星期可多賣出20件,在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價(jià)x(x為整數(shù))元,每星期售出商品的利潤為y元,請寫出x與y之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)請畫出上述函數(shù)的大致圖象.
(3)當(dāng)降價(jià)多少元時(shí),每星期的利潤最大?最大利潤是多少?
小麗解答過程如下:
解:(1)根據(jù)題意,可列出表達(dá)式:
y=(60-x)(300+20x)-40(300+20x),
即y=-20x2+100x+6000.
∵降價(jià)要確保盈利,∴40<60-x60.解得0x<20.
(2)上述表達(dá)式的圖象是拋物線的一部分,函數(shù)的大致圖象如圖1:
(3)∵a=-20<0,
∴當(dāng)x==2.5時(shí),y有最大值,y==6125.
所以,當(dāng)降價(jià)2.5元時(shí),每星期的利潤 最大,最大利潤為6125.
老師看了小麗的解題過程,說小馬第(1)問的表達(dá)式是正確的,但自變量x的取值范圍不準(zhǔn)確.(2)(3)問的答案,也都存在問題.請你就老師說的問題,進(jìn)行探究,寫出你認(rèn)為(1)(2)(3)中正確的答案,或說明錯(cuò)誤原因.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
甲、乙兩人同時(shí)從相距25千米的A地去B 地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達(dá)B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時(shí)距他們出發(fā)的時(shí)間恰好3小時(shí),求兩人的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BC∥AD,AB=CD,BE=DF,其中全等三角形的對數(shù)是( )
A. 5 B. 3 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿線段AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:△AGE≌△AGD
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)過A(-3,0),B(1,0),C(-5,y 1),D(5,y 2)四點(diǎn),則y1與y2的大小關(guān)系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com