【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、c 是 RtABC和 RtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問題:
(1)寫出一個(gè)“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.
【答案】(1)(答案不唯一)(2)見解析(3)1.
【解析】
(1)直接找一組勾股數(shù)代入方程即可;
(2)根據(jù)根的判別式即可求解;
(3)根據(jù)方程的解代入求出a,b,c的關(guān)系,再根據(jù)完全平方公式的變形進(jìn)行求解.
(1)當(dāng)a=3,b=4,c=5時(shí),
勾系一元二次方程為;
(2)依題意得△=()2-4ab=2c2-4ab,
∵a2+b2=c2,∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0,
即△≥0,故方程必有實(shí)數(shù)根;
(3)把x=-1代入得a+b=c
∵四邊形 ACDE 的周長(zhǎng)是6,
即2(a+b)+ c=6,故得到c=2,
∴a2+b2=4,a+b=2
∵(a+b)2= a2+b2+2ab
∴ab=2,
故ABC 的面積為ab=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是的直角三角形,的中點(diǎn)分別是點(diǎn)點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),按箭頭方向通過到;以的速度運(yùn)動(dòng),設(shè)點(diǎn)從開始運(yùn)動(dòng)的距離為,的面積為試回答以下問題:
(1)點(diǎn)從出發(fā)到停止,寫出與的函數(shù)關(guān)系式并寫出的取值范圍.
(2)求出點(diǎn)從出發(fā)后幾秒時(shí),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)中x與y的部分對(duì)應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減小;
③x=3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
上述結(jié)論中正確的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)O為對(duì)角線AC的中點(diǎn),過點(diǎn)o作射線OG、ON分別交AB,BC于點(diǎn)E,F(xiàn),且∠EOF=90°,BO、EF交于點(diǎn)P.則下列結(jié)論中:
⑴圖形中全等的三角形只有兩對(duì);
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結(jié)論有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如兩個(gè)全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點(diǎn),△DEF可繞頂點(diǎn)E旋轉(zhuǎn),線段DE,EF分別交線段CA,CB(或它們所在的直線)于M、N.
(1)如圖1,當(dāng)線段EF經(jīng)過△ABC的頂點(diǎn)時(shí),點(diǎn)N與點(diǎn)C重合,線段DE交AC于M,已知AC=BC=5,則MC= ;
(2)如果2,當(dāng)線段EF與線段BC邊交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MN,EC,請(qǐng)?zhí)骄?/span>AM,MN,CN之間的等量關(guān)系,并說明理由;
(3)如圖3,當(dāng)線段EF與BC延長(zhǎng)線交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MN,EC,則(2)中AM,MN,CN之間的等量關(guān)系還成立嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲船勻速順流而下從港到港,同時(shí)乙船勻速逆流而上從港到港,港處于、兩港的正中間,某個(gè)時(shí)刻,甲船接到通知需立即掉頭逆流而上到處,到處后迅速按原順流速度駛向港,最后甲、乙兩船都到達(dá)了各自的目的地.甲、乙兩船在靜水中的速度相同,設(shè)甲、乙兩船與港的距離之和為,行駛時(shí)間為,與的部分關(guān)系如圖,則當(dāng)兩船在、間某處相超時(shí),兩船距離港的距離為________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知⊙A經(jīng)過點(diǎn)E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:計(jì)算和分解因式
(1)計(jì)算: ﹣|﹣4|+2cos60°﹣(﹣ )﹣1
(2)因式分解:(x﹣y)(x﹣4y)+xy.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com