【題目】已知,在Rt△ABC中,∠C=90°,AC=15,BC=8,D為AB的中點,E點在邊AC上,將△BDE沿DE折疊得到△B1DE,若△B1DE與△ADE重疊部分面積為△ADE面積的一半,則CE=_____________.
【答案】或
【解析】
分兩種情形:①如圖1中,設(shè)AD交EB1于O,當DO=OA時,△B1DE與△ADE重疊部分面積為△ADE面積的一半.②:如圖2中,當DB1平分線段AE時,滿足條件.分別求解即可解決問題;
情形1:如圖1中,設(shè)AD交EB1于O,當DO=OA時,△B1DE與△ADE重疊部分面積為△ADE面積的一半.
作DM⊥BE于M,DN⊥EB1于N.
∵BC=8,AC=15,∠C=90°,
∴AB==17,
∵D是AB中點,
∴BD=AD= ,
∵∠BED=∠DEB1,
∴DM=DN,
∵ ,
∴BE=2EO,
∵BE=EB1,
∴EO=OB1,∵DO=OA,
∴四邊形DEAB1是平行四邊形,
∴DB1=BD=AE=,
∴CE=AC﹣AE=
情形2:如圖2中,當DB1平分線段AE時,滿足條件.
∵BD=AD,EO=OA,
∴OD∥BE,
∴∠BED=∠EDO=∠BDE,
∴BE=BD=,
在Rt△BCE中,EC=.
綜上所述,滿足條件的CE的值為或.
故答案是:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,兩位家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人400元的兩家旅行社.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩位家長全額收費,學(xué)生都按七折收費;乙旅行社的優(yōu)惠條件是:家長、學(xué)生都按八折收費假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅游.
(1)如果設(shè)選擇甲旅行社所用的費用為元,選擇乙旅行社所用的費用為元.請寫出、與x的關(guān)系式.
(2)在(1)的前提下,請你幫助兩位家長根據(jù)所帶學(xué)生人數(shù),選擇哪家旅行社合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列結(jié)論中正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③AD=BD;④點D在AB的垂直平分線上⑤S△ABD=S△ACD
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形材料,高線AH長8 cm,底邊BC長10 cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )
A. 40 cm2 B. 20 cm2
C. 25 cm2 D. 10 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=4,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個坡角為30°的斜坡上有一電線桿AB,當太陽光與水平線成45°角時,測得該桿在斜坡上的影長BC為20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD和△BCD都是等邊三角形紙片,AB=2,將△ABD紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.
(1)求證:△FBE是直角三角形;
(2)求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)之道在于悟,希望同學(xué)們在問題(1)解決過程中有所感悟,再繼續(xù)探索研究問題(2)(3).
(1)如圖①,D在線段BC上,∠B=∠C=∠ADE,AD=DE.求證:△ABD≌△DCE.
(2)如圖②,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=4,在CB的延長線上有一動點D,連接AD,以AD為直角邊作等腰直角三角形ADE(∠ADE=90°,AD=DE ),連接EB并延長,與AC的延長線交于點F.當動點D在運動過程中,CF的長度是否會發(fā)生變化,如果變化,請說明理由;如果不變,請求出CF的長.
(3)如圖③,射線AM與BN,MA⊥AB,NB⊥AB,點P是AB上一點, PA=1,PB=2,在射線AM與BN上分別作點C、點D,滿足△CPD為等腰直角三角形.則△CPD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋擲一枚均勻的骰子(各面上的點數(shù)分別為1﹣6點)1次,落地后:
(1)朝上的點數(shù)有哪些結(jié)果?他們發(fā)生的可能性一樣嗎?
(2)朝上的點數(shù)是奇數(shù)與朝上的點數(shù)是偶數(shù),這兩個事件的發(fā)生可能性大小相等嗎?
(3)朝上的點數(shù)大于4與朝上的點數(shù)不大于4,這兩個事件的發(fā)生可能性大小相等嗎?如果不相等,那么哪一個可能性大一些?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com