6
分析:本題是開放題,應先根據平行四邊形的性質及已知條件得到圖中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OEA≌△OFC,△OED≌△OFB,△OAB≌△OCD共6對.再分別進行證明.
解答:①△ADC≌△CBA,
∵ABCD為平行四邊形,
∴AB=CD,∠ABC=∠ADC,AD=BC,
∴△ADC≌△CBA;
②△ABD≌△CDB,
∵ABCD為平行四邊形,
∴AB=CD,∠BAD=∠BCD,AD=BC,
∴△ABD≌△CDB;
③△OAD≌△OCB,
∵對角線AC與BD的交于O,
∴OA=OC,OD=OB,∠AOD=∠BOC,
∴△OAD≌△OCB;
④△OEA≌△OFC,
∵對角線AC與BD的交于O,
∴OA=OC,∠AOE=∠COF,∠AOE=∠COF,
∴△OEA≌△OFC;
⑤△OED≌△OFB,
∵對角線AC與BD的交于O,
∴OD=OB,∠EOD=∠FOB,OE=OF,
∴△OED≌△OFB;
⑥△OAB≌△OCD,
∵對角線AC與BD的交于O,
∴OA=OC,∠AOB=∠DOC,OB=OD,
∴△OAB≌△OCD.
故答案為6.
點評:本題考查平行四邊形的性質及全等三角形的判定條件.判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.