【題目】下圖為我市某校2015年參加各類比賽(包括圍棋、書法、繪畫、鋼琴四個類別)的參賽人數(shù)統(tǒng)計圖:
(1)該校參加比賽的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,該校參加圍棋所對應(yīng)的圓心角的度數(shù)是 ;
(3)從全市中小學參加比賽選手中隨機抽取60人,其中有20人獲獎.今年我市中小學參加比賽人數(shù)共有2400人,請你估算今年參加繪畫比賽的人數(shù)以及參加比賽獲獎的總?cè)藬?shù)約是多少人?
【答案】(1)24,圖見解析;(2)120°;(3)400人,800人.
【解析】
(1)根據(jù)參加書法比賽的條形統(tǒng)計圖和扇形統(tǒng)計圖的信息即可得總?cè)藬?shù),由此即可得參加圍棋比賽的人數(shù),再補全條形統(tǒng)計圖即可;
(2)先求出參加圍棋的人數(shù)占比,再乘以即可得;
(3)先求出參加繪畫比賽的人數(shù)占比、獲獎的人數(shù)占比,再分別乘以2400即可得.
(1)該校參加比賽的總?cè)藬?shù)是(人)
參加圍棋比賽的人數(shù)為(人)
補全條形統(tǒng)計圖如下:
(2)參加圍棋的人數(shù)占比為
則
故答案為:;
(3)參加繪畫比賽的人數(shù)占比為
獲獎的人數(shù)占比
則(人)
(人)
答:今年參加繪畫比賽的人數(shù)約為400人,參加比賽獲獎的總?cè)藬?shù)約是800人.
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期著名的數(shù)學家劉徽在《九章算術(shù)》中提出了“割圓術(shù)——割之彌細,所失彌少,隔之又割,以至不可割,則與圓周合體,而無所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來近似計算圓的面積和周長.如圖1,若用圓的內(nèi)接正六邊形的面積來近似估計半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來近似估計半徑為1的⊙O的面積,則____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙C過菱形ABCD的三個頂點B,A,D,連結(jié)BD,過點A作AE∥BD交射線CB于點E.
(1)求證:AE是⊙C的切線.
(2)若半徑為2,求圖中線段AE、線段BE和圍成的部分的面積.
(3)在(2)的條件下,在⊙C上取點F,連結(jié)AF,使∠DAF=15°,求點F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過使用手機app購票,智能閘機、手持驗票機驗票的方式,能夠大大縮短游客排隊購票、驗票的等待時間,且操作極其簡單,已知某公園采用新的售票、驗票方式后,平均每分鐘接待游客的人數(shù)是原來的10倍,且接待5000名游客的入園時間比原來接待600名游客的入園時間還少5分鐘,求該公園原來平均每分鐘接待游客的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC,點P在線段BA的延長線上,作PD⊥AC,交AC的延長線于點D,點D關(guān)于直線AB的對稱點為E,連接PE并延長PE到點F,使EF=AC,連接CF.
(1)依題意補全圖1;
(2)求證:AD=CF;
(3)若AC=2,點Q在直線AB上,寫出一個AQ的值,使得對于任意的點P總有QD=QF,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店經(jīng)銷A、B兩種水果,A種水果進貨單價比B種水果進貨單價多2元,花50元購進A種水果的數(shù)量與花40元購進B種水果的數(shù)量相同.在銷售過程中發(fā)現(xiàn),A種水果每天銷售量是與銷售價x(元)滿足關(guān)系式,B種水果,每天銷售量與銷售價x(元)滿足= -x+14
(1)求A、B兩種水果的單價.
(2)已知A種水果比B種水果的銷售價高2元/千克,且每天A、B水果均有a千克壞掉.設(shè)B水果售價為t元/千克,每天兩種水果的總利潤為W元,求W與t的函數(shù)解析式,并求出當a的取值在什么范圍內(nèi),水果店有可能不賠錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:)是反比例函數(shù)關(guān)系.當時,.
(1)寫出I關(guān)于R的函數(shù)解析式;
(2)完成下表,并在給定的平面直角坐標系中畫出這個函數(shù)的圖象;
… | … | |||||||||
… | … |
(3)如果以此蓄電池為電源的用電器的限制電流不能超過.那么用電器可變電阻應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=4,且AB=,連接對角線AC,點E為AC中點,點F為線段AB上的動點,連接EF,作點C關(guān)于EF的對稱點C',連接C'E,C'F,若△EFC'與△ACF的重疊部分(△EFG)面積等于△ACF的,則BF=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線與x軸交于點A(3,0)和點B,與y軸相交于點C(0,3),拋物線的頂點為點D.
(1)求拋物線的表達式及頂點D的坐標;
(2)聯(lián)結(jié)AD、AC、CD,求∠DAC的正切值;
(3)如果點P是原拋物線上的一點,且∠PAB=∠DAC,將原拋物線向右平移m個單位(m>0),使平移后新拋物線經(jīng)過點P,求平移距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com