【題目】如圖1,拋物線y=﹣x2+bx+c交x軸于點A(- 4,0)和點B,交y軸于點C(0,4).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,當(dāng)△ADC面積有最大值時,在拋物線對稱軸上找一點M,使DM+AM的值最小,求出此時M的坐標(biāo);
(3)點Q在直線AC上的運動過程中,是否存在點Q,使△BQC為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)點M的坐標(biāo)為M(,5);(3)存在,Q(,)或(,)或(-3,1)或().
【解析】
(1)將A(- 4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;
(2)直線AC的解析式為:,表達(dá)出DQ的長度,及△ADC的面積,根據(jù)二次函數(shù)的性質(zhì)得出△ADC面積的最大值,從而得出D點坐標(biāo),作點D關(guān)于對稱軸對稱的點,確定點M,使DM+AM的值最;
(3)△BQC為等腰三角形,則表達(dá)出三邊,并對三邊進(jìn)行分類討論,計算得出Q點的坐標(biāo)即可.
解:(1)將A(- 4,0)、C(0,4)代入y=﹣x2+bx+c中得
,解得 ,
∴,
(2)直線AC的解析式為:
設(shè)Q(m,m+4) ,則 D(m,)
DQ=()- (m+4)=
當(dāng)m=-2時,面積有最大值
此時點D的坐標(biāo)為D(-2,6),D點關(guān)于對稱軸對稱的點D1(-1,6)
直線AD1的解析式為:
當(dāng)時,
所以,點M的坐標(biāo)為M(,5)
(3)∵,
∴設(shè)Q(t,t+4),
由得,,
∴B(1,0),
∴
,
△BQC為等腰三角形
①當(dāng)BC=QC時,則,∴此時,
∴Q(,)或(,);
②當(dāng)BQ=QC時,則,解得,
∴Q();
③當(dāng)BQ=BC時,則,解得t=-3,
∴Q(-3,1);
綜上所述,若△BQC為等腰三角形,則
Q(,)或(,)或(-3,1)或().
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標(biāo)為(- 3,4),點B的坐標(biāo)為(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB 的面積;
(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達(dá)到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(D,E,F三點不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線1,交拋物線與點Q.
(1)求拋物線的解析式;
(2)當(dāng)點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;
(3)在點P運動的過程中,坐標(biāo)平面內(nèi)是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點,BP=3,Q是CD邊上一動點,將梯形APQD沿直線PQ折疊,A的對應(yīng)點為A′,當(dāng)CA′的長度最小時,CQ的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象記為,它與軸交于點,;將繞點旋轉(zhuǎn)180°得,交軸于點;將繞點旋轉(zhuǎn)180°得,交軸于點;……如此進(jìn)行下去,得到一條“波浪線”.若在這條“波浪線”上,則____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com