如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點為A(n,2)、B(2,-4).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.

【答案】分析:(1)由A和B都在反比例函數(shù)圖象上,故把兩點坐標(biāo)代入到反比例解析式中,列出關(guān)于m與n的方程組,求出方程組的解得到m與n的值,確定出A的坐標(biāo)及反比例函數(shù)解析式,把確定出的A坐標(biāo)及B的坐標(biāo)代入到一次函數(shù)解析式中,得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,確定出一次函數(shù)解析式;
(2)令一次函數(shù)解析式中x為0,求出此時y的值,即可得到一次函數(shù)與y軸交點C的坐標(biāo),得到OC的長,三角形AOB的面積分為三角形AOC及三角形BOC面積之和,且這兩三角形底都為OC,高分別為A和B的橫坐標(biāo)的絕對值,利用三角形的面積公式即可求出三角形ABC的面積.
解答:解:(1)∵A(n,2)、B(2,-4)在反比例函數(shù)圖象上,
,解得,即A(-4,2),B(2,-4),
∵A(-4,2),B(2,-4)在一次函數(shù)圖象上,
,解得,
∴兩函數(shù)解析式分別為y=-,y=-x-2;

(2)由(1)得一次函數(shù)y=-x-2,
令x=0,解得y=-2,
∴一次函數(shù)與y軸交點為C(0,-2),
∴OC=2,
∴S△AOB=S△AOC+S△BOC
=OC•|y點A橫坐標(biāo)|+OC•|y點B橫坐標(biāo)|
=×2×4+×2×2=6.
點評:此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有利用待定系數(shù)法求函數(shù)解析式,兩函數(shù)交點坐標(biāo)的意義,一次函數(shù)與坐標(biāo)軸交點的求法,以及三角形的面積公式,利用了數(shù)形結(jié)合的思想.第一問利用的方法為待定系數(shù)法,即根據(jù)題意把兩交點坐標(biāo)分別代入兩函數(shù)解析式中,得到方程組,求出方程組的解確定出函數(shù)解析式中的字母常數(shù),從而確定出函數(shù)解析式,第二問要求學(xué)生借助圖形,找出點坐標(biāo)與三角形邊長及邊上高的關(guān)系,進(jìn)而把所求三角形分為兩三角形來求面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點.
(1)求這兩個函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點,且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點.
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時,x的值;
(3)寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過A、B兩點,將點A向上平移1個單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點A、B,交x軸于點C.
(1)求m的取值范圍;
(2)若點A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊答案