【題目】已知關(guān)于 的方程 .
(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求整數(shù) 的值.
【答案】
(1)
證明:∵ ,
∴ 是關(guān)于x的一元二次方程.
∵
恒成立
∴此方程總有兩個(gè)不相等的實(shí)數(shù)根
(2)
解: ,
∴ .
∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且m是整數(shù),
∴ 或
【解析】(1)計(jì)算出△的值,即可判定方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)解方程求得 ,再由方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且m是整數(shù),即可求得m的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識(shí),掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根,以及對(duì)根與系數(shù)的關(guān)系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a=255 ,b=344,c=433,則a ,b,c 大小關(guān)系是( )
A. b>c>a B. a>b>c C. c>a>b D. a<b<c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2﹣4x+5向左平移一個(gè)單位長(zhǎng)度后的對(duì)稱(chēng)軸是直線______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, , 的垂直平分線分別與, 及的延長(zhǎng)線相交于點(diǎn), , ,且. ⊙O是的外接圓, 的平分線交于點(diǎn),交⊙O于點(diǎn),連接, .
(1)求證: ;
(2)試判斷與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)若, 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點(diǎn)E , 交BC的延長(zhǎng)線于點(diǎn)F .
(1)求證:BF=CD;
(2)連接BE , 若BE⊥AF , ∠F=60°, ,求 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=2(x﹣1)2+2向左平移3個(gè)單位,再向下平移4個(gè)單位,那么得到的拋物線的表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)積極響應(yīng)政府“創(chuàng)新發(fā)展”的號(hào)召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷(xiāo)售量y(萬(wàn)件)關(guān)于售價(jià)x(元/件)的函數(shù)解析式為:
(1)若企業(yè)銷(xiāo)售該產(chǎn)品獲得的利潤(rùn)為W(萬(wàn)元),請(qǐng)直接寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于售價(jià)x(元/件)的函數(shù)解析式;
(2)當(dāng)該產(chǎn)品的售價(jià)x(元/件)為多少時(shí),企業(yè)銷(xiāo)售該產(chǎn)品獲得的年利潤(rùn)最大?最大年利潤(rùn)是多少?
(3)若企業(yè)銷(xiāo)售該產(chǎn)品的年利潤(rùn)不少于750萬(wàn)元,試確定該產(chǎn)品的售價(jià)x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)三角形的相似比為2:3,則這兩個(gè)三角形對(duì)應(yīng)角平分線的比為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com