如圖,已知:邊長為1的正方形ABCD頂點都在⊙O上,P為邊CD的中點,直線AP交圓于E點.求弦DE的長.
分析:設圓心為O,連接OD、OE,過點O作OF⊥DE于F,根據(jù)圓周角定理可得∠DAE=
1
2
∠DOE,根據(jù)垂徑定理可得∠DOF=
1
2
∠DOE,DE=2DF,然后求出△ADP和△OFD相似,根據(jù)相似三角形對應邊成比例可得
OD
AP
=
DF
DP
,再根據(jù)正方形的性質求出OD,利用勾股定理列式求出AP,然后代入比例式進行計算即可求出DF,然后求出DE.
解答:解:如圖,設圓心為O,連接OD、OE,過點O作OF⊥DE于F,
由圓周角定理得,∠DAE=
1
2
∠DOE,
由垂徑定理可得,∠DOF=
1
2
∠DOE,DE=2DF,
又∵∠ADC=∠OFD=90°,
∴△ADP∽△OFD,
OD
AP
=
DF
DP
,
∵正方形ABCD的邊長為1,
∴OD=
1
2
×
12+12
=
2
2
,
∵P是CD的中點,
∴DP=
1
2
,
根據(jù)勾股定理,AP=
12+(
1
2
)
2
=
5
2
,
2
2
5
2
=
DF
1
2

解得DF=
10
10
,
∴DE=2DF=2×
10
10
=
10
5
點評:本題考查了相似三角形的判定與性質,圓周角定理,垂徑定理,正方形的性質,作輔助線構造出直角三角形與相似三角形是解題的關鍵,也是本題的難點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:邊長為1的圓內接正方形ABCD中,P為邊CD的中點,直線AP交圓于E點.
(1)求弦DE的長.
(2)若Q是線段BC上一動點,當BQ長為何值時,三角形ADP與以Q,C,P為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在邊長為1的正方形ABCD中,以D為圓心、DA為半徑畫弧
AC
,E是AB上的一動點,過精英家教網(wǎng)E作
AC
的切線交BC于點F,切點為G,連GC,過G作GC的垂線交AD與N,交CD的延長線于M.
(1)求證:AE=EG,GF=FC;
(2)設AE=x,用含x的代數(shù)式表示FC的長;
(3)在圖中,除GF以外,是否還存在與FC相等的線段,是哪些?試證明或說明理由;
(4)當△GDN是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形邊長為4,以A為圓心,AB為半徑作
BD
,M是BC的中點,過點M作EM⊥BC交
BD
于點E,則
BE
的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:邊長為1的正方形ABCD內接于⊙O,P為邊CD的中點,直線AP交圓于E點.
【小題1】求弦DE的長;
【小題2】若Q是線段BC上一動點,當CQ長為何值時,三角形ADP與以Q,C,P為頂點的三角形相似。

查看答案和解析>>

同步練習冊答案