【題目】某公司投入研發(fā)費用40萬元(40萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為4/件.此產(chǎn)品年銷售量y(萬件)與售價x(元件)之間滿足函數(shù)關系式y=﹣x+20

(1)求這種產(chǎn)品第一年的利潤W(萬元)與售價x(元件)滿足的函數(shù)關系式;

(2)該產(chǎn)品第一年的利潤為24萬元,那么該產(chǎn)品第一年的售價是多少?

(3)第二年,該公司將第一年的利潤24萬元(24萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為3/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過10萬件.請計算該公司第二年的利潤W2至少為多少萬元.

【答案】12元; 46萬元.

【解析】

根據(jù)總利潤每件利潤銷售量投資成本,列出式子即可;

構建方程即可解決問題;

根據(jù)題意求出自變量的取值范圍,再根據(jù)二次函數(shù),利用而學會設的性質即可解決問題;

解:;
由題意:,
解得:
答:該產(chǎn)品第一年的售價是12元;
公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過10萬件.

,
拋物線的對稱軸,又,
時,有最小值,最小值萬元,
答:該公司第二年的利潤至少為46萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)交于、兩點,與軸交于點,作軸,垂足為,已知,

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)連接、,在軸取點,使面積相等,求點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情突發(fā),危難時刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動員能力就是全 國人民的堅定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領先世界的基 建強國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點在線段上運動,垂足為點的延長線交于點 ,經(jīng)測量,

1)求線段的長度;(結果 精確到

2)連接,當線段時, 求點和點之間的距離.(結果 精確到,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為2的正方形ABCD中,對角線ACBD相交于點OPBD上一動點,過PEFAC,分別交正方形的兩條邊于點EF.設BP=x,△BEF的面積為y,則能反映yx之間關系的圖象為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于O

1)作B的平分線與O交于點D(用尺規(guī)作圖不用寫作法,但要保留作圖痕跡);

2)在(1)中,連接AD,BAC=60°,C=66°DAC的大小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調查結果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:

1)此次共調查了   名學生;

2)將條形統(tǒng)計圖1補充完整;

3)圖2中“小說類”所在扇形的圓心角為   度;

4)若該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△AOB,點C是邊AO所在直線上的動點,點Dx軸上的動點,在矩形CDEF中,CD=6DE=,則OF的最小值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線,直線與拋物線、軸分別相交于、

1時,點的坐標為________

2)當、兩點重合時,求的值;

3)當點達到最高時,求拋物線解析式;

4)在拋物線軸所圍成的封閉圖形的邊界上,我們把橫坐標是整數(shù)的點稱為可點,直接寫出可點的個數(shù)為____

查看答案和解析>>

同步練習冊答案