已知:平行四邊形ABCD中,點(diǎn)E是AB的中點(diǎn),在直線AD上截取AF=2FD,EF交AC于G,則=   
【答案】分析:由平行四邊形的性質(zhì)易證兩三角形相似,但是由于點(diǎn)F的位置未定,需分類討論.分兩種情況:(1)點(diǎn)F在線段AD上時(shí);(2)點(diǎn)F在線段AD的延長(zhǎng)線上時(shí).
解答:解:(1)點(diǎn)F在線段AD上時(shí),設(shè)EF與CD的延長(zhǎng)線交于H,
∵AB∥CD,
∴△EAF∽△HDF,
∴HD:AE=DF:AF=1:2,
即HD=AE
∵AB∥CD,
∴△CHG∽△AEG,
∴AG:CG=AE:CH
∵AB=CD=2AE,
∴CH=CD+DH=2AE+AE=AE,
∴AG:CG=2:5,
∴AG:(AG+CG)=2:(2+5),
即AG:AC=2:7;

(2)點(diǎn)F在線段AD的延長(zhǎng)線上時(shí),設(shè)EF與CD交于H,
∵AB∥CD,
∴△EAF∽△HDF,
∴HD:AE=DF:AF=1:2,
即HD=AE,
∵AB∥CD,
∴△CHG∽△AEG,
∴AG:CG=AE:CH
∵AB=CD=2AE,
∴CH=CD-DH=2AE-AE=AE,
∴AG:CG=2:3,
∴AG:(AG+CG)=2:(2+3),
即AG:AC=2:5.
答案:填
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)以及分類討論的數(shù)學(xué)思想;其中由相似三角形的性質(zhì)得出比例式是解題關(guān)鍵.注意:求相似比不僅要認(rèn)準(zhǔn)對(duì)應(yīng)邊,還需注意兩個(gè)三角形的先后次序.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在平行四邊形ABCD中,點(diǎn)M、N分別是邊DC、BC的中點(diǎn),
AB
=
a
,
AD
=
b
,那么
MN
關(guān)于
a
、
b
的分解式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在平行四邊形ABCD中,點(diǎn)E在邊BC上,射線AE交BD于點(diǎn)G,交DC的延長(zhǎng)線于點(diǎn)F,AB=6,BE=3EC,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在平行四邊形ABCD中,向量
AB
=
a
,
BC
=
b
,那么向量
BD
等于( 。
A、
a
+
b
B、
a
-
b
C、-
a
+
b
D、-
a
-
b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:平行四邊形ABCD,以AB為直徑的⊙O交對(duì)角線BD于P,交邊BC于Q,連接AQ交BD精英家教網(wǎng)于E,若BP=PD,
(1)判斷平行四邊形ABCD是何種特殊平行四邊形,并說明理由;
(2)若AE=4,EQ=2,求:四邊形AQCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在平行四邊形ABCD中,點(diǎn)E、F分別在邊AB、CD上,且AE=2EB,CF=2FD,連接EF.
(1)寫出與
FC
相等的向量
AE
AE
;
(2)填空
AD
+
EB
-
EF
=
AE
FC
AE
FC
;
(3)求作:
AD
-
FE
.(保留作圖痕跡,不要求寫作法,請(qǐng)說明哪個(gè)向量是所求作的向量)

查看答案和解析>>

同步練習(xí)冊(cè)答案