A、B兩碼頭相距150千米,甲客船順流由A航行到B,乙客船逆流由B到A,若甲、乙兩客船在靜水中的速度相同,同時出發(fā),它們航行的路程y(千米)與航行時間x(時)的關(guān)系如圖所示.
(1)求客船在靜水中的速度及水流速度;
(2)一艘貨輪由A碼頭順流航行到B碼頭,貨輪比客船早2小時出發(fā),貨輪在靜水中的速度為10千米/時,在此坐標(biāo)系中畫出貨輪航程y(千米)與時間x(時)的關(guān)系圖象,并求貨輪與客船乙相遇時距A碼頭的路程。
(1)靜水中的速度為20千米/時,水流速度為5千米/時;(2)90千米.
解析試題分析:此題涉及船速,水速,順風(fēng),逆風(fēng)問題,解答時一定要考慮是順風(fēng)還是逆向行駛,不能把凈水速誤認為是船速,另外會求解函數(shù)的解析式,會畫簡單的函數(shù)圖形.(1)由圖象中路程與時間的關(guān)系可得客船在靜水中的順?biāo)嫠俣,由于兩客船在靜水中的速度相同,又知水流速度不變,進而可得到關(guān)于速度的關(guān)系,可求解靜水中的速度及水速;(2)貨輪順風(fēng)行駛,可得其速度,由有時間關(guān)系可得貨輪行駛的函數(shù)關(guān)系式,進而可求解客輪與貨輪之間距離的問題.
試題解析:
解:(1)由圖象知,甲船順流航行6小時的路程為150千米,所以順流航行的速度為150÷6 =25千米/時;乙船逆流航行10小時的路程為150千米,所以逆流航行的速度為150÷10 =15千米/時
由于兩客船在靜水中的速度相同,又知水流速度不變,所以設(shè)客船在靜水中的速度為a千米/時,水流的速度為b千米/時,列方程組得:
,解得:
答:客船在靜水中的速度為20千米/時,水流速度為5千米/時.
(2)由題意知,貨輪順流航行的速度為10+5=15(千米/時),又知貨輪提前出發(fā)兩小時,所以該圖象過(0,30),(8,150)兩點,圖象如下圖線段DE.設(shè)DE的解析式為y=k1x+b1
∵,解得:
∴直線DE的解析式是:
設(shè)BC的解析式為y=k2x+b2
∴,解得:
∴BC的解析式為y=-15x+150
解方程組得
答:貨輪與客船乙相遇時距A碼頭的路程是90千米.
考點:一次函數(shù)的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
某樓盤一樓是車庫(暫不出售),二樓至二十三樓均為商品房(對外銷售),商品房售價方案如下:第八層售價為3 000元/米2,從第八層起每上升一層,每平方米的售價增加40元;反之,樓層每下降一層,每平方米的售價減少20元.已知商品房每套面積均為120平方米,開發(fā)商為購買者制定了兩種購房方案:
方案一:購買者先交納首付金額(商品房總價的30%),再辦理分期付款(即貸款).
方案二:購買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(已知每月物業(yè)管理費為a元)
(1)請寫出每平方米售價y(元/米2)與樓層x(2≤x≤23,x是正整數(shù))之間的函數(shù)解析式.
(2)小張已籌到120 000元,若用方案一購房,他可以購買哪些樓層的商品房呢?
(3)有人建議老王使用方案二購買第十六層,但他認為此方案還不如不免收物業(yè)管理費而直接享受9%的優(yōu)惠劃算.你認為老王的說法一定正確嗎?請用具體數(shù)據(jù)闡明你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在國道202公路改建工程中,某路段長4000米,由甲乙兩個工程隊擬在30天內(nèi)(含30天)合作完成.已知兩個工程隊各有10名工人(設(shè)甲乙兩個工程隊的工人全部參與生產(chǎn),甲工程隊每天的工作量相同,乙工程隊每人每天的工作量相同).甲工程隊1天、乙工程2天共修路200米;甲工程隊2天、乙工程隊3天共修路350米.
(1)試問甲乙兩個工程隊每天分別修路多少米?
(2)甲乙兩個工程隊施工10天后,由于工作需要需從甲隊抽調(diào)m人去學(xué)習(xí)新技術(shù),總部要求在規(guī)定時間內(nèi)完成,請問甲隊可以抽調(diào)多少人?
(3)已知甲工程隊每天的施工費用為0.6萬元,乙工程隊每天的施工費用為0.35萬元,要使該工程的施工費用最低,甲乙兩隊各做多少天?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為表彰在某活動中表現(xiàn)積極的同學(xué),老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;3個文具盒、1支鋼筆共需57元.
(1)每個文具盒、每支鋼筆各多少元?
(2)若本次表彰活動,老師決定購買10件作為獎品,若購買x個文具盒,10件獎品共需w元,求w與x的函數(shù)關(guān)系式。如果至少需要購買3個文具盒,本次活動老師最多需要花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一次函數(shù)y=kx+b與y=mx+n的圖象如圖所示.
(1)寫出關(guān)于x,y的方程組的解;
(2)若0<kx+b<mx+n,根據(jù)圖像寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線y=-x+4與反比例函數(shù)y=的圖象相交于點A(-2,a),并且與x軸相交于點B。
(1)求a的值;
(2)求反比例函數(shù)的表達式;
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知一次函數(shù)與的圖象相交于A點,函數(shù)的圖象分別交軸、軸于點B,C,函數(shù)的圖象分別交軸、軸于點E,D.
(1)求A點的坐標(biāo);
(2)求的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關(guān)系,如下表所示.
x | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知與成正比例,且當(dāng)時,.
(1)求與的函數(shù)關(guān)系式;
(2)求當(dāng)時的函數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com