【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E,AE=2,CE=

【答案】1
【解析】解:∵DE是AB的垂直平分線, ∴BE=AE=2,∠ABE=∠A=30°,
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∴∠CBE=30°,
∴CE= BE=1,
所以答案是:1.

【考點精析】解答此題的關鍵在于理解線段垂直平分線的性質(zhì)的相關知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等,以及對含30度角的直角三角形的理解,了解在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.

(1)求證:AD平分∠BAC;

(2)連接OC,如果∠B=30°,CF=1,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y= 的圖象分別交于A、C兩點,已知點B與點D關于坐標原點O成中心對稱,且點B的坐標為(m,0).其中m>0.

(1)四邊形ABCD的是 . (填寫四邊形ABCD的形狀)
(2)當點A的坐標為(n,3)時,四邊形ABCD是矩形,求m,n的值.
(3)試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,BE⊥CD,BF⊥AD,垂足分別為E、F,若CE=2,DF=1,∠EBF=60°,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大美山水“硒都恩施”是一張亮麗的名片,八方游客慕名而來,今年“五一”期間,恩施州共接待游客1450000人,將1450000用科學記數(shù)法表示為(
A.0.145×106
B.14.5×105
C.1.45×105
D.1.45×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,DAB上一點,以CD為直徑的⊙OBC于點E,連接AECD于點P,交⊙O于點F,連接DF,CAE=ADF

1)判斷AB與⊙O的位置關系,并說明理由;

2)若PFPC=12,AF=5,求CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.a(a﹣1)=a2﹣a
B.(a43=a7
C.a4+a3=a7
D.2a5÷a3=a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a,b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列信息;據(jù)報道,全世界受到威脅的動物種類數(shù)如下表所示.請你按照下面要求回答問題:

全世界受到威脅的動物種類數(shù)

動物分類

哺乳類

鳥類

爬行類

兩棲類

受到威脅的種類數(shù)(種)

1100

1100

300

100

(1)制作適當?shù)慕y(tǒng)計圖表示表中的數(shù)據(jù),你選擇的統(tǒng)計圖是____________________;

(2)通過學習本題,請你寫一句20字左右的感想.

查看答案和解析>>

同步練習冊答案