(2005•山西)如圖,一扇窗戶打開后,用窗鉤AB可將其固定,這里所運用的幾何原理是( )

A.三角形的穩(wěn)定性
B.兩點之間線段最短
C.兩點確定一條直線
D.垂線段最短
【答案】分析:要對其固定,顯然運用了三角形的穩(wěn)定性.
解答:解:構(gòu)成△AOB,這里所運用的幾何原理是三角形的穩(wěn)定性.故選A.
點評:要能運用數(shù)學知識解釋生活中的現(xiàn)象.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•山西)如圖,在平面直角坐標系xOy,半徑為1的⊙O分別交x軸、y軸于A、B、C、D四點,拋物線y=x2+bx+c經(jīng)過點C且與直線AC只有一個公共點.
(1)求直線AC的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)點P為(2)中拋物線上的點,由點P作x軸的垂線,垂足為點Q,問:此拋物線上是否存在這樣的點P,使△PQB∽△ADB?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•山西)如圖,在平面直角坐標系xOy,半徑為1的⊙O分別交x軸、y軸于A、B、C、D四點,拋物線y=x2+bx+c經(jīng)過點C且與直線AC只有一個公共點.
(1)求直線AC的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)點P為(2)中拋物線上的點,由點P作x軸的垂線,垂足為點Q,問:此拋物線上是否存在這樣的點P,使△PQB∽△ADB?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2005•山西)如圖,AB為⊙O的直徑,點P為其半圓上任意一點(不含A、B),點Q為另一半圓上一定點,若∠POA為x度,∠PQB為y度.則y與x的函數(shù)關系是   

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2005•山西)如圖所示,平移方格紙中的圖形,使點A平移到A′處,畫出放大一倍后的圖形.(所畫圖中線段必須借助直尺畫直,并用陰影表示).

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2005•山西)如圖,將三角板的直角頂點放置在直線AB上的點O處,使斜邊CD∥AB.則∠α的余弦值為   

查看答案和解析>>

同步練習冊答案