【題目】今年423日是第23世界讀書日.某校圍繞學生日人均閱讀時間這一問題,對初二學生進行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請你根據(jù)圖中提供的信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量是

2)請將條形統(tǒng)計圖補充完整.

3)在扇形統(tǒng)計圖中,計算出日人均閱讀時間在11.5小時對應(yīng)的圓心角是 度.

4)根據(jù)本次抽樣調(diào)查,試估計我市12000名初二學生中日均閱讀時間在0.51.5小時的有多少人.

【答案】1150 2)圖見解析 (3108 49600

【解析】

試題(1)利用日人均閱讀時間在00.5小時的人數(shù)除以所占的比例可得本次抽樣調(diào)查的樣本容量;(2)求出日人均閱讀時間在0.51小時的人數(shù)即可;(3)人均閱讀時間在11.5小時對應(yīng)的圓心角度數(shù)=360°×所占比例;(4)日人均閱讀時間在0.51.5小時的人數(shù)=12000×后兩組所占的比例和.

試題解析:(1)樣本容量是:30÷20%=150;

2)日人均閱讀時間在0.51小時的人數(shù)是:150-30-45=75(人).

3)人均閱讀時間在11.5小時對應(yīng)的圓心角度數(shù)是:360°×=108°;

412000×=9600(人).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是直角三角形,ACB=90°

(1)尺規(guī)作圖:作C,使它與AB相切于點D,與AC相交于點E,保留作圖痕跡,不寫作法,請標明字母.

(2)在你按(1)中要求所作的圖中,若BC=3,A=30°,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分線AM交BC于點D,在所作圖形中,將Rt△ABC沿某條直線折疊,使點A與點D重合,折痕EF交AC于點E,交AB于點F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.

(1)試判斷四邊形AEDF的形狀,并證明;

(2)若AB=10,BC=8,在折痕EF上有一動點P,求PC+PD的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖120194月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是( )

A. adbcB. a+c+2b+dC. a+b+14c+dD. a+db+c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則AB兩點間的距離表示為AB|ab|.根據(jù)以上知識解題:

1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點位于﹣42之間,那么|a+4|+|a2|______

4)對于任何有理數(shù)x,|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過原點O及點A(﹣4,0)和點C(2,3).

(1)求拋物線的解析式及頂點坐標;

(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點E,將直線y=2x沿y軸向下平移n個單位后得到直線l,若直線l經(jīng)過C點,與y軸交于點D,且與拋物線的對稱軸交于點F.若P是拋物線上一點,且PC=PF,求點P的坐標;

(3)如圖2,將(1)中所求拋物線向上平移4個單位得到新拋物線,求新拋物線上到直線CD距離最短的點的坐標.(直接寫出結(jié)果,不要解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國古代數(shù)學的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設(shè)有 5 頭牛、2 只羊,值金 10 兩;2 頭牛、5 只羊,值金 8 兩。問:每頭牛、每只羊各值金多少兩?” 設(shè)每頭牛值金 x 兩,每只羊值金 y 兩,則列方程組錯誤的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,OABC外接圓,點D是圓上一點,點D、B分別在AC兩側(cè),且BD=BC,連接AD、BD、OD、CD,延長CB到點P,使∠APB=DCB

1)求證:AP為⊙O的切線;

2)若⊙O的半徑為1,當OED是直角三角形時,求ABC的面積;

3)若BOE、DOEAED的面積分別為a、b、c,試探究a、b、c之間的等量關(guān)系式,并說明理由.

查看答案和解析>>

同步練習冊答案