【題目】如圖,正方形AOBC的邊OB、OA分別在x、y軸上,點C坐標為(8,8),將正方形AOBC繞點A逆時針旋轉角度αα90°),得到正方形ADEF,ED交線段BC于點Q,ED的延長線交線段OB于點P,連接AP、AQ

1)求證:ACQ≌△ADQ

2)求∠PAQ的度數(shù),并判斷線段OP、PQ、CQ之間的數(shù)量關系,并說明理由;

3)連接BE、ECCD、DB得到四邊形BECD,在旋轉過程中,四邊形BECD能否是矩形?如果能,請求出點P的坐標,如果不能,請說明理由.

【答案】(1)見解析,(2)PQOP+CQ,理由見解析,(3));理由見解析.

【解析】

1)由正方形的性質及旋轉的性質可得到ADAC,利用HL即可證得結論;

2)利用(1)的結論,結合條件可證得AOP≌△ADP,進一步可求得PAQ45°,再結合全等可求得PQOP+CQ;

3)利用矩形的性質可得到BQEQCQDQ,設Px0),則可表示出BQPB的長,在Rt△BPQ中,利用勾股定理可得到關于x的方程,則可求得P點坐標.

1)證明:

正方形AOBC繞點A旋轉得到正方形ADEF

ADAC,ADQACQ90°,

Rt△ADQRt△ACQ

,

∴Rt△ACQ≌Rt△ADQHL);

2)解:

∵△ACQ≌△ADQ,

∴∠CAQDAQ,CQDQ,

Rt△AOPRt△ADP

,

∴Rt△AOP≌Rt△ADPHL),

∴∠OAPDAP,OPOD,

∴∠PAQDAQ+DAPDAC+DAODAC+∠DAO)=OAC45°

PQPD+DQOP+CQ;

3)解:四邊形BECD可為矩形,如圖,

若四邊形BECD為矩形,則BQEQCQDQ,

BC8

BQCQ4,

P點坐標為(x0),則POx,

OPPDCQDQ,

PDx,DQ4

Rt△BPQ中,可知PQx+4,BQ4,BP8x,

x+42+42=(8x2,解得x,

P點坐標為(,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB,△COD是等腰直角三角形,點DAB上.

1)求證:△ACO≌△BDO;

2)若∠BOD30°,求∠ACD度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是直線y=2x+1與反比例函數(shù)(x0)圖象的交點,且點A的橫坐標為1

(1)k的值;

(2)如圖1,雙曲線(x0)上一點M,若SAOM=4,求點M的坐標;

(3)如圖2所示,若已知反比例函數(shù)(x0)圖象上一點B(3,1),點P是直線y=x上一動點,點Q是反比例函數(shù)(x0)圖象上另一點,是否存在以PA BQ為頂點的平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△AC 內(nèi)接于⊙O,D 是弧BC上一點,OD⊥BC,垂足為 H.

(1)如圖 1,當圓心 O AB 邊上時,求證:AC=2OH;

(2)如圖 2,當圓心 O 在△ABC 外部時,連接 AD、CD,AD BC 交于點 P.求證:∠ACD=∠APB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教研室的數(shù)學調(diào)研小組對老師在講評試卷中學生參與的深度與廣度進行評調(diào)查,其評價項目為主動質疑”、“獨立思考”、“專注聽講”、“講解題目四項,該調(diào)研小組隨機抽取了若干名初中九年級學生的參與情況,繪制成如圖所示的頻數(shù).

分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題

(1)在這次評價中,一共抽查了   名學生;

(2)在扇形統(tǒng)計圖中,項目主動質疑所在的扇形的圓心角的度數(shù)為   度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市有60000名九年級學生,那么在試卷評講課中,獨立思考的九年級學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.

(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)

(2)每件童裝降價多少元時,平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD的兩條對角線分別為68,M、N分別是邊BCCD的中點,P是對角線BD上一點,則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】城市中“打車難”一直是人們關注的一個社會熱點問題.近幾年來,“互聯(lián)網(wǎng)+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應用,名為“數(shù)據(jù)包絡分析”(簡稱DEA)的一種效率評價方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對每天24個時段的DEA值進行調(diào)查,調(diào)查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時間內(nèi),北京的DEAy與時刻t的關系近似滿足函數(shù)關系(a,b,c是常數(shù),且≠0),如圖記錄了3個時刻的數(shù)據(jù),根據(jù)函數(shù)模型和所給數(shù)據(jù),當“供需匹配”程度最好時,最接近的時刻t是(

A. 4.8 B. 5 C. 5.2 D. 5.5

查看答案和解析>>

同步練習冊答案