【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)與軸交于點(diǎn)二次函數(shù)的圖象經(jīng)過兩點(diǎn),且與軸的負(fù)半軸交于點(diǎn).
求二次函數(shù)的解析式及點(diǎn)的坐標(biāo).
點(diǎn)是線段上的一動點(diǎn),動點(diǎn)在直線下方的二次函數(shù)圖象上.設(shè)點(diǎn)的橫坐標(biāo)為.過點(diǎn)作于點(diǎn)求線段的長關(guān)于的函數(shù)解析式,并求線段的最大值.
【答案】(1),點(diǎn)的坐標(biāo)為;(2),有最大值
【解析】
(1)根據(jù)一次函數(shù)的解析式,可得B,C的坐標(biāo),由待定系數(shù)法,可求得二次函數(shù)的解析式;
(2)過點(diǎn)作軸的平行線與交于點(diǎn),由D,H的坐標(biāo)特征,可設(shè),,易得BOC~DMH,從而得,進(jìn)而即可得到結(jié)論.
(1)∵直線與軸交于點(diǎn),與軸交于點(diǎn),
∴令y=0,得,解得:x=4,令x=0,得:y=-2,
∴點(diǎn)的坐標(biāo)分別為.
將點(diǎn)的坐標(biāo)代入二次函數(shù)的解析式得:,解得:,
∴二次函數(shù)的解析式為:,
當(dāng)時(shí),,解得:或,
點(diǎn)的坐標(biāo)為;
(2)過點(diǎn)作軸的平行線與交于點(diǎn),
∵OB=4,OC=2,
∴BC=,
∵點(diǎn)的橫坐標(biāo)為,點(diǎn)是線段上的一動點(diǎn),動點(diǎn)在直線下方的二次函數(shù)圖象上,
∴點(diǎn),點(diǎn)(0<m<4),
∵DH∥y軸,
∴∠OCB=∠MHD,
∵∠OCB+∠OBC=∠MHD+∠MDH=90°,
∴,
∵∠BOC=∠DMH=90°,
∴BOC~DMH,
∴,
,(0<m<4),
,
∴當(dāng)m=2時(shí),的最大值=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角∠CAB的度數(shù);
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明主設(shè)計(jì)的“作一個(gè)含30°角的直角三角形”的尺規(guī)作圖過程.
已知:直線l.
求作:△ABC,使得∠ACB=90°,∠ABC=30°.
作法:如圖,
①在直線l上任取兩點(diǎn)O,A;
②以點(diǎn)O為圓心,OA長為半徑畫弧,交直線l于點(diǎn)B;
③以點(diǎn)A為圓心,AO長為半徑畫弧,交于點(diǎn)C;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:在⊙O中,AB為直徑,
∴∠ACB=90°(① ),(填推理的依據(jù))
連接OC
∵OA=OC=AC,
∴∠CAB=60°,
∴∠ABC=30°(② ),(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)測驗(yàn)中,八年級(1)班的成績?nèi)缦卤恚?/span>
分?jǐn)?shù) | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
人數(shù) | 2 | 3 | 10 | 6 | 4 | 7 | 6 | 2 |
(1)本次數(shù)學(xué)測驗(yàn)成績的平均數(shù),中位數(shù),眾數(shù)各是多少?
(2)若老師把人數(shù)中的數(shù)據(jù)“10”看成了“9”,數(shù)據(jù)“7”看成了“8”,則平均數(shù),中位數(shù),眾數(shù)中不受影響的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以A(0, )為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過A、C兩點(diǎn),且以過E而平行于y軸的直線為對稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)矩形紙片ABCD,AB=12,BC=6,點(diǎn)E在BC邊上,將△CDE沿DE折疊,點(diǎn)C落在C'處;DC',EC'分別交AB于F,G,若GE=GF,則sin∠CDE的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有分別標(biāo)注數(shù)字為1,2、3的三個(gè)小球,這些球除標(biāo)注的數(shù)字外都相同.
(1)攪勻后從中任意摸出一個(gè)球,標(biāo)注的數(shù)字恰好為2的概率是________;
(2)攪勻后從中任意摸出一個(gè)球,記錄下數(shù)字后放回袋中并攪勻,再從袋中任意摸出一個(gè)球,求兩次數(shù)字的和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)若以點(diǎn)A為圓心的圓與邊BC相切于點(diǎn)D,請?jiān)谙聢D中作出點(diǎn)D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若該圓與邊AC相交于點(diǎn)E,連接DE,當(dāng)∠BAC=100°時(shí),求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某斜拉橋引申出的部分平面圖,AE,CD是兩條拉索,其中拉索CD與水平橋面BE的夾角為72°,其底端與立柱AB底端的距離BD為4米,兩條拉索頂端距離AC為2米,若要使拉索AE與水平橋面的夾角為35°,請計(jì)算拉索AE的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com