我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.

數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題,或者把數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案.

例如,求1+2+3+4+…+n的值,其中n是正整數(shù).

對(duì)于這個(gè)求和問(wèn)題,如果采用純代數(shù)的方法(首尾兩頭加),問(wèn)題雖然可以解決,但在求和過(guò)程中,需對(duì)n的奇偶性進(jìn)行討論.

如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來(lái)說(shuō)明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n 的值,方案如下:如圖,斜線(xiàn)左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線(xiàn)右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為,即1+2+3+4+…+n=

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)

(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)

解:(1)

因?yàn)榻M成此平行四邊形的小圓圈共有n 行,每行有[(2n -1)+1]個(gè),即2n 個(gè),

所以組成此平行四邊形的小圓圈共有(n×2n)個(gè),即2n2個(gè).

∴1+3+5+7+…+(2n-1)==n2

(2)因?yàn)榻M成此正方形的小圓圈共有n 行,每行有n個(gè),所以共有(n×n)個(gè), 即n2 個(gè).

∴1+3+5+7+…+(2n-1)=n×n=n2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀題:我國(guó)著名數(shù)學(xué)家華羅庚說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形小數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔離分家事萬(wàn)休.”數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整數(shù);
如果采用數(shù)形結(jié)合的方法,現(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n的值,方案如下:
如圖,斜線(xiàn)左邊的三角形圖案是由上到下每層依次分別為1,2,3…n個(gè)小圓圈的個(gè)數(shù)恰好為所求式子1+2+3+4+…+n的值,為求式子的值,現(xiàn)把左邊三角形倒放于斜線(xiàn)右邊,與原三角形組成一個(gè)平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

①仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n為正整數(shù)(要求畫(huà)出圖形,寫(xiě)出結(jié)果即可)
②試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求畫(huà)出圖形,寫(xiě)出結(jié)果即可)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題,或者把數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
對(duì)于這個(gè)求和問(wèn)題,如果采用純代數(shù)的方法(首尾兩頭加),問(wèn)題雖然可以解決,但在求和過(guò)程中,需對(duì)n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來(lái)說(shuō)明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n的值,方案如下:如圖,斜線(xiàn)左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線(xiàn)右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,精英家教網(wǎng)并利用圖形做必要的推理說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)著名數(shù)學(xué)家華羅庚曾經(jīng)說(shuō)過(guò)這樣一句話(huà):“數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休”.
如下圖,在一個(gè)邊長(zhǎng)為1的正方形紙板上,依次貼上面積為
1
2
1
4
,
1
8
1
16
,…,
1
210
的小長(zhǎng)方形紙片,請(qǐng)你寫(xiě)精英家教網(wǎng)出最后余下未貼部分的面積的表達(dá)式:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事非.”如圖,在一個(gè)邊長(zhǎng)為1的正方形紙版上,依次貼上面積為
1
2
,
1
4
1
8
1
2n
,的矩形彩色紙片(n為大于1的整數(shù)).
請(qǐng)你用“數(shù)形結(jié)合”的思想,依數(shù)形變化的規(guī)律,計(jì)算
1
2
+
1
4
+
1
8
+…+
1
2n
=
1-
1
2n
1-
1
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一位老人非常喜歡孩子,每當(dāng)有孩子到他家做客時(shí),老人都要拿出糖果招待他們.來(lái)一個(gè)孩子,老人就給孩子一塊糖;來(lái)兩個(gè)孩子,老人就給每個(gè)孩子兩塊糖…
(1)第一天有a個(gè)男孩去了老人家,老人一共給了這些孩子a2塊糖;
(2)第二天有b個(gè)女孩去了老人家,老人一共給了這些孩子b2塊糖;
(3)第三天這(a+b)個(gè)孩子一起去了老人家,老人一共給了這些孩子(a+b)2塊糖.
這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總數(shù)相比哪個(gè)多,哪個(gè)少?為什么?經(jīng)過(guò)思考可知,a個(gè)男孩每人多得了b塊糖,b個(gè)女孩每人多得了a塊糖,因此多得了ab+ab=2ab塊糖,即有(a+b)2=a2+b2+2ab.
我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”.在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
體會(huì)數(shù)形結(jié)合思想的內(nèi)涵,試設(shè)計(jì)一種圖形來(lái)說(shuō)明(a+b)2=a2+b2+2ab.(要求:畫(huà)出圖形,并利用圖形作必要的推理說(shuō)明)

查看答案和解析>>

同步練習(xí)冊(cè)答案