【題目】如圖,在平而直角坐標(biāo)系中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn).正方形ABCD的項(xiàng)點(diǎn)CD在第一象限,頂點(diǎn)D在反比例函數(shù)yk≠0)的圖象上.若正方形ABCD向左平移n個(gè)單位后,頂點(diǎn)C恰好落在反比例函數(shù)的圖象上,則n的值是( 。

A.2B.3C.4D.5

【答案】B

【解析】

由一次函數(shù)的關(guān)系式可求出與x軸,y軸的交點(diǎn)坐標(biāo),即求出OAOB的長,由正方形的性質(zhì)、三角形全等可以求出DEAE、CFBF的長,進(jìn)而求出G的坐標(biāo),最后求出CG的長就是n的值.

解:過DC分別作DE⊥x軸,CF⊥y軸,垂足分別為EFCF交反比例函數(shù)的圖象于G,

x0y0分別代入y=﹣4x+4得:y4x1,

∴A10),B04),

∴OA1,OB4;

ABCD是正方形,

易證△AOB≌△DEA≌△BCF AAS),

∴DEBFOA1,AECFOB4,

∴D5,1),F0,5),

D5,1),代入y得,k5

y5代入y得,x1,即FG1,

CGCFFG413,即n3

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,六個(gè)小朋友圍成一圈(面向圈內(nèi))做傳球游戲,規(guī)定:球不得傳給自己,也不得傳給左手邊的人.若游戲中傳球和接球都沒有失誤.

若由開始一次傳球,則接到球的概率分別是 、 ;

若增加限制條件:也不得傳給右手邊的人”.現(xiàn)在球已傳到手上,在下面的樹狀圖2

畫出兩次傳球的全部可能情況,并求出球又傳到手上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點(diǎn)B1的坐標(biāo)為   

當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,AB=ACBC⊙O于點(diǎn)D,AC⊙O于點(diǎn)E∠BAC=45°,給出以下五個(gè)結(jié)論:①∠EBC=22.5°②BD=DC;③AE=2EC;劣弧是劣弧2倍;⑤AE=BC,其中正確的序號(hào)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,PCD邊上一點(diǎn)(DPCP),∠APB90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點(diǎn)M,過點(diǎn)BBNMPDC于點(diǎn)N,連接AC,分別交PM,PB于點(diǎn)E,F.現(xiàn)有以下結(jié)論:

連接DD',則AP垂直平分DD';

四邊形PMBN是菱形;

AD2DPPC;

AD2DP,則;

其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB6M為對(duì)角線BD上任意一點(diǎn)(不與B、D重合),連接CM,過點(diǎn)MMNCM,交AB(或AB的延長線)于點(diǎn)N,連接CN

感知:如圖①,當(dāng)MBD的中點(diǎn)時(shí),易證CMMN.(不用證明)

探究:如圖②,點(diǎn)M為對(duì)角線BD上任一點(diǎn)(不與B、D重合).請(qǐng)?zhí)骄?/span>MNCM的數(shù)量關(guān)系,并證明你的結(jié)論.

應(yīng)用:(1)直接寫出MNC的面積S的取值范圍   ;

2)若DMDB35,則ANBN的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的弦,于點(diǎn),過點(diǎn)的直線交的延長線于點(diǎn),且是⊙的切線.

1)判斷的形狀,并說明理由;

2)若,求的長;

3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個(gè)矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料.

(1)設(shè)計(jì)一種砌法,使矩形花園的面積為300m2

(2)當(dāng)BC為何值時(shí),矩形ABCD的面積有最大值?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線,在四邊形ABCD中,對(duì)角線BD是它的相似對(duì)角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________

查看答案和解析>>

同步練習(xí)冊(cè)答案