【題目】如圖,已知△ABC,且∠ACB90°.

1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):

以點(diǎn)A為圓心,BC邊的長為半徑作A;

以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC

2)請判斷直線BDA的位置關(guān)系,并說明理由.

【答案】1)詳見解析;(2)直線BDA相切,理由詳見解析.

【解析】

1)①以點(diǎn)A為圓心,以BC的長度為半徑畫圓即可;

②以點(diǎn)A為圓心,以任意長為半徑畫弧,與邊AB、AC相交于兩點(diǎn)E、F,再以點(diǎn)B為圓心,以同等長度為半徑畫弧,與AB相交于一點(diǎn)M,再以點(diǎn)M為圓心,以EF長度為半徑畫弧,與前弧相交于點(diǎn)N,作射線BN即可得到∠ABD

2)根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得ACBD,再根據(jù)平行線間的距離相等可得點(diǎn)ABD的距離等于BC的長度,然后根據(jù)直線與圓的位置關(guān)系判斷直線BD與⊙A相切.

解:(1)如圖所示;

2)直線BD與⊙A相切.

∵∠ABD=∠BAC,

ACBD,

∵∠ACB90°,⊙A的半徑等于BC,

∴點(diǎn)A到直線BD的距離等于BC,

∴直線BD與⊙A相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1y2x之間的函數(shù)圖象如圖1,sx之間的函數(shù)圖象(部分)如圖2

1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

3)在圖2中,補(bǔ)全整個(gè)過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的校園文化生活,學(xué)校開設(shè)了書法、體育、美術(shù)音樂共四門選修課程.為了合理的分配教室,教務(wù)處問卷調(diào)查了部分學(xué)生,并將了解的情況繪制成如下不完整的統(tǒng)計(jì)圖:

1)參與問卷調(diào)查的共有________人,其中選修美術(shù)的有________人,選修體育的學(xué)生人數(shù)對應(yīng)扇形統(tǒng)計(jì)圖中圓心角的度數(shù)為________.

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若每人必須選修一門課程,且只能選一門,已知小紅沒有選體育,小剛沒有選修書法和美術(shù),則他們選修同一門課程的概率是多少,列樹狀圖或列表法求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、CD表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準(zhǔn)備了四種粽子各一個(gè),請用“列表法”或“畫樹形圖”的方法,求出小明同時(shí)選中花生粽子和紅棗粽子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點(diǎn)和點(diǎn),且頂點(diǎn)在第三象限,設(shè),則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕舉行了南通濠河國際龍舟邀請賽,在500米直道競速賽道上,甲、乙兩隊(duì)所劃行的路程y(單位:米)與時(shí)間t(單位:分)之間的函數(shù)關(guān)系式如圖所示,根據(jù)圖中提供的信息,有下列說法:①甲隊(duì)比乙隊(duì)提前0.5分到達(dá)終點(diǎn)②當(dāng)劃行1分鐘時(shí),甲隊(duì)比乙隊(duì)落后50米③當(dāng)劃行分鐘時(shí),甲隊(duì)追上乙隊(duì)④當(dāng)甲隊(duì)追上乙隊(duì)時(shí),兩隊(duì)劃行的路程都是300米其中錯(cuò)誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.

(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個(gè)交點(diǎn)坐標(biāo)為(1,2),另一個(gè)交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)

1)求ka,c的值;

2)過點(diǎn)A0,m)(0m4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于BC兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點(diǎn)DBC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AE,BG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)

判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時(shí),求AF的值.

查看答案和解析>>

同步練習(xí)冊答案