【題目】如圖1,點(diǎn)是線(xiàn)段的中點(diǎn),分別以和為邊在線(xiàn)段的同側(cè)作等邊三角形和等邊三角形,連結(jié)和,相交于點(diǎn),連結(jié),
(1)求證:;
(2)求的大;
(3)如圖2,固定不動(dòng),保持的形狀和大小不變,將繞著點(diǎn)旋轉(zhuǎn)(和不能重疊),求的大小.
【答案】(1)證明見(jiàn)解析;(2)∠AEB=60°;(3)∠AEB=60°.
【解析】
(1)由等邊三角形的性質(zhì)可得,,繼而可得∠AOC=∠DOB,利用SAS證明,利用全等三角形的性質(zhì)即可得;;
(2)先證明,從而可得 ∠ODB=∠DBO,再利用三角形外角的性質(zhì)可求得,,進(jìn)而根據(jù)即可求得答案;
(3)證明,從而可得,再由,可得,設(shè)與交于點(diǎn),利用三角形內(nèi)角和定理以及對(duì)頂角的性質(zhì)即可求得.
(1)∵和均為等邊三角形,
∴,,
∴,
即∠AOC=∠DOB,
∴(SAS)
∴;
(2)∵O為AD中點(diǎn),
∴DO=AO,
∵OA=OB,
∴,
∴∠ODB=∠DBO,
∵∠ODB+∠DBO=∠AOB=60°,
∴
同理,,
∴;
(3)∵,
∴,
∴,
又∵CO=DO,AO=BO,AO=DO,
∴OC=OB,
∴(SAS),
∴,
∵,
∴,
∴,
設(shè)與交于點(diǎn),
∵,,
又,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC的垂直平分線(xiàn)交BC于D,交AC于E,AE=3cm, △ABD的周長(zhǎng)為13cm,那么△ABC的周長(zhǎng)為_______________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于點(diǎn)E,交CD延長(zhǎng)線(xiàn)于點(diǎn)F,則DE+DF的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線(xiàn)段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年3月,某集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評(píng)估,將各連鎖店按照評(píng)估成績(jī)分成了A、B、C、D四個(gè)等級(jí),繪制了如圖尚不完整的統(tǒng)計(jì)圖表.
評(píng)估成績(jī)分 | 評(píng)定等級(jí) | 頻數(shù) |
A | 2 | |
B | b | |
C | 15 | |
D | 6 |
根據(jù)以上信息解答下列問(wèn)題:
(1)求m,b的值;
(2)在扇形統(tǒng)計(jì)圖中,求B等級(jí)所在扇形的圓心角的大;
(3)從評(píng)估成績(jī)不少于80分的連鎖店中,任選2家介紹營(yíng)銷(xiāo)經(jīng)驗(yàn),用樹(shù)狀圖或列表法求其中至少有一家是A等級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是直線(xiàn)AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得AB∥DE的是( )
A. ∠α+∠β=180° B. ∠β﹣∠α=90° C. ∠β=3∠α D. ∠α+∠β=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),,,垂足分別為、,.點(diǎn)在線(xiàn)段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在射線(xiàn)上運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為(當(dāng)點(diǎn)運(yùn)動(dòng)結(jié)束時(shí),點(diǎn)運(yùn)動(dòng)隨之結(jié)束).
(1)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)時(shí),與是否全等,并判斷此時(shí)線(xiàn)段和線(xiàn)段的位置關(guān)系,請(qǐng)分別說(shuō)明理由;
(2)如圖(2),若“,”改為“”,點(diǎn)的運(yùn)動(dòng)速度為,其它條件不變,當(dāng)點(diǎn)、運(yùn)動(dòng)到何處時(shí)有與全等,求出相應(yīng)的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中是假命題的個(gè)數(shù)是( )
①當(dāng)c=0時(shí),函數(shù)的圖象經(jīng)過(guò)原點(diǎn);
②當(dāng)b=0時(shí),函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
③函數(shù)的圖象最高點(diǎn)的縱坐標(biāo)是;
④當(dāng)c>0且函數(shù)的圖象開(kāi)口向下時(shí),方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com