【題目】為了調(diào)查學生對社會主義核心價值觀的了解程度,我校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A:非常了解;B:比較了解;C:基本了解;D:不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了下面的三種統(tǒng)計圖表.
請結(jié)合統(tǒng)計圖表,回答下列問題.
(1)本次參與調(diào)查的學生共有 人,m= ,n= ;
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應(yīng)的圓心角是 度;
(3)請補全圖1所示的條形統(tǒng)計圖;
【答案】(1)400;15%;35%;(2)126°(3)140
【解析】
(1)用A的人數(shù)除以所占的百分比,計算即可求出被調(diào)查學生總?cè)藬?shù),用B的人數(shù)除以被調(diào)查的學生總?cè)藬?shù)計算即可求出m,再根據(jù)各部分的百分比的和等于1計算即可求出n;
(2)用D的百分比乘以360°計算即可得解;
(3)求出D的學生人數(shù),然后補全統(tǒng)計圖即可.
(1)20÷5%=400,
=15%,
1-5%-15%-45%=35%,
故答案為:400;15%;35%;
(2)360°×35%=126°;
(3)∵D等級的人數(shù)為:400×35%=140,
∴補全條形統(tǒng)計圖如圖所示.
考點: 條形統(tǒng)計圖;扇形統(tǒng)計圖.
科目:初中數(shù)學 來源: 題型:
【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5分鐘儲存罐注滿,關(guān)閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當輸出的水泥總量達到8立方米時,關(guān)閉輸出口.儲存罐內(nèi)的水泥量y(立方米)與時間x(分)之間的部分函數(shù)圖象如圖所示.
(1)求每分鐘向儲存罐內(nèi)注入的水泥量.
(2)當3≤x≤5.5時,求y與x之間的函數(shù)關(guān)系式.
(3)儲存罐每分鐘向運輸車輸出的水泥量是 立方米,從打開輸入口到關(guān)閉輸出口共用的時間為 分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應(yīng)售多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的對稱軸是y軸,且點(2,2),(1,)在拋物線上,點P是拋物線上不與頂點N重合的一動點,過P作PA⊥x軸于A,PC⊥y軸于C,延長PC交拋物線于E,設(shè)M是O關(guān)于拋物線頂點N的對稱點,D是C點關(guān)于N的對稱點.
(1)求拋物線的解析式及頂點N的坐標;
(2)求證:四邊形PMDA是平行四邊形;
(3)求證:△DPE∽△PAM,并求出當它們的相似比為時的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點A在x軸上,點B的坐標為(8,2),點D的坐標為(0,2),則菱形ABCD面積為( )
A. 8B. 16C. 24D. 32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°,在BC邊上取一點D,使CD=CA,點E在AC上,連接ED,若∠AED=45°,且CE=1,BD=2,則AD的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1:y=2x﹣3與直線l2:y=﹣x+3相交于點P,分別與y軸相交于點A、B.
(1)求點P的坐標;
(2)點M(0,k)為y軸上的一個動點,過點M作y軸的垂線交l1和l2于點N,Q,當NQ=2時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在社會與實踐的課堂上,劉老師組織七(1)班的全體學生用硬紙板制作圓柱體(圖1).七(1)班共有學生50人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學生每小時剪20個圓柱側(cè)面(圖2)或剪10個圓柱底面(圖3).
(1)七(1)班有男生、女生各多少人?
(2)原計劃男生負責剪圓柱側(cè)面,女生負責剪圓柱底面,要求一個圓柱側(cè)面配兩個圓柱底面,那么每小時剪出的筒身與筒底能配套嗎?如果不配套,那么男生應(yīng)向女生支援多少人時,才能使每小時內(nèi)剪出的側(cè)面與底面配套.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com