【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍ABBC兩邊),設(shè)AB=xm

1)若花園的面積為192m2,求x的值;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求x取何值時(shí),花園面積S最大,并求出花園面積S的最大值.

【答案】(1x的值為1216;(2)花園面積S的最大值為195平方米.

【解析】試題分析:(1)根據(jù)題意得出長(zhǎng)×=192,進(jìn)而得出答案;

2)由題意可得出:S=x28-x=-x2+28x=-x-142+196,再利用二次函數(shù)增減性求得最值.

試題解析:(1∵AB=x,則BC=28-x),

∴x28-x=192,

解得:x1=12,x2=16,

答:x的值為1216;

2∵AB=xm,

∴BC=28-x

∴S=x28-x=-x2+28x=-x-142+196,

P處有一棵樹與墻CDAD的距離分別是15m6m,

∵28-15=13,

∴6≤x≤13

當(dāng)x=13時(shí),S取到最大值為:S=-13-142+196=195,

答:花園面積S的最大值為195平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在四邊形 ABCD 中,∠Ax°,∠Cy°.

(1) ABC+∠ADC °.(用含 x,y 的代數(shù)式表示)

(2) BE、DF 分別為∠ABC、∠ADC 的外角平分線,

①若 BEDF,x30,則 y ;

②當(dāng) y2x 時(shí),若 BE DF 交于點(diǎn) P,且∠DPB20°,求 y 的值.

(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點(diǎn) Q,則∠Q °.(用含 x,y 的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng):中華詩(shī)詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的中國(guó)詩(shī)詞大會(huì)海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次海選比賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表

組別

海選成績(jī)x

A

50≤x60

B

60≤x70

C

70≤x80

D

80≤x90

E

90≤x100

請(qǐng)根據(jù)所給信息,解答下列問題

①圖1條形統(tǒng)計(jì)圖中D組人數(shù)有多少?

②在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角的度數(shù)為 度;

③規(guī)定海選成績(jī)?cè)?/span>90分以上(包括90分)記為優(yōu)等,請(qǐng)估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績(jī)優(yōu)等的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:

1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的AB1C1

2)作出AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的A1B2C2

3)請(qǐng)直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】修正后的《水污染防治法》于201811日起施行,某企業(yè)為了提高污水處理的能力,決定購(gòu)買10臺(tái)污水處理設(shè)備,現(xiàn)有兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量如下表:

價(jià)格(萬(wàn)元/臺(tái))

12

10

處理污水量(噸/月)

240

200

經(jīng)預(yù)算,該企業(yè)購(gòu)買設(shè)備的資金不高于105萬(wàn)元.

1)請(qǐng)你設(shè)計(jì)該企業(yè)可能的購(gòu)買方案;

2)若企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買方案?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下表中的二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的對(duì)應(yīng)值,可判斷二次函數(shù)的解析式為( 。

x

0

1

2

y

A. y=x2x B. y=x2+x

C. y=x2x+ D. y=x2+x+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.已知:在矩形中,是對(duì)角線,于點(diǎn)于點(diǎn);

1)如圖1,求證:;

2)如圖2,當(dāng)時(shí),連接.,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于矩形面積的.

查看答案和解析>>

同步練習(xí)冊(cè)答案