【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當∠ODB=30°時,求證:BC=OD.

【答案】
(1)證明:∵OD⊥AC OD為半徑,

= ,

∴∠CBD=∠ABD,

∴BD平分∠ABC


(2)證明:∵OB=OD,

∴∠OBD=∠0DB=30°,

∴∠AOD=∠OBD+∠ODB=30°+30°=60°,

又∵OD⊥AC于E,

∴∠OEA=90°,

∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,

又∵AB為⊙O的直徑,

∴∠ACB=90°,

在Rt△ACB中,BC= AB,

∵OD= AB,

∴BC=OD


【解析】(1)由OD⊥AC OD為半徑,根據(jù)垂徑定理,即可得 = ,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可證得BD平分∠ABC;(2)首先由OB=OD,易求得∠AOD的度數(shù),又由OD⊥AC于E,可求得∠A的度數(shù),然后由AB是⊙O的直徑,根據(jù)圓周角定理,可得∠ACB=90°,繼而可證得BC=OD.
【考點精析】本題主要考查了含30度角的直角三角形和垂徑定理的相關(guān)知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點Aa3),B(﹣1,b),且ABx軸,若兩點的距離為5,則滿足條件的a的值為_____b的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果把存入3萬元記作+3萬元,那么支出2萬元應記作__________, -4萬元表示的意思是________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,BC=ACBCA=90°,P為直線AC上一點,過點AADBP于點D,交直線BC于點Q

1)如圖1,當P在線段AC上時,求證:BP=AQ

2)如圖2,當P在線段CA的延長線上時,(1)中的結(jié)論是否成立?________(填“成立”或“不成立”

3)在(2)的條件下,當∠DBA=________時,存在AQ=2BD,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點, 分別是射線, 上兩定點,且 ;動點從點向點運動,以為斜邊向右側(cè)作等腰直角.設(shè)線段的長,點到射線的距離為

1)若,直接寫出點到射線的距離;

2)求關(guān)于的函數(shù)表達式,并在圖中畫出函數(shù)圖象;

3)當動點從點運動到點,求點運動經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元,則每個月少賣10件.設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)若每個月的利潤不低于2160元,售價應在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的暗礁區(qū),兩燈塔A,B之間的距離恰好等于圓的半徑,為了使航船(S)不進入暗礁區(qū),那么S對兩燈塔A,B的視角∠ASB必須(
A.大于60°
B.小于60°
C.大于30°
D.小于30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要畫一個周長是25.12厘米的圓,圓規(guī)兩腳尖應張開_______厘米,畫出的圓的面積是________平方厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長是(
A.1+3
B.3+
C.4+
D.5+

查看答案和解析>>

同步練習冊答案