【題目】研究問題:一個不透明的盒中裝有若干個白球,怎樣估算白球的數(shù)量?
操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒灒驅(qū)嶒灥囊螅合葦嚢杈鶆颍看蚊鲆粋球,放回盒中,再繼續(xù).
統(tǒng)計結(jié)果如表:
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到有記號球的次數(shù)m | 25 | 44 | 57 | 105 | 160 | 199 |
摸到有記號球的頻率 | 0.25 | 0.22 | 0.19 | 0.21 | 0.20 | 0.20 |
(1)請你完成上表中數(shù)據(jù),并估計摸到有記號球的概率是多少?
(2)估計盒中共有球多少個?沒有記號球有多少個?
科目:初中數(shù)學 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有“友好根”.
(1)方程(x﹣)(x﹣)=0_____“友好根”(填:“有”或“沒有”);
(2)已知關(guān)于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=﹣,下列結(jié)論:①圖象必經(jīng)過點(﹣3,1);②圖象在第二,四象限內(nèi);③y隨x的增大而增大;④當x>﹣1時,y>3.其中錯誤的結(jié)論有( )
A. ①④ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形為平行四邊形,為坐標原點,,將平行四邊形繞點逆時針旋轉(zhuǎn)得到平行四邊形,點在的延長線上,點落在軸正半軸上.
(1)證明:是等邊三角形:
(2)平行四邊形繞點逆時針旋轉(zhuǎn)度.的對應(yīng)線段為,點的對應(yīng)點為
①直線與軸交于點,若為等腰三角形,求點的坐標:
②對角線在旋轉(zhuǎn)過程中設(shè)點坐標為,當點到軸的距離大于或等于時,求的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,,點是邊上的動點(含端點,),連結(jié),以所在直線為對稱軸作點的對稱點,連結(jié),,,,點,,分別是線段,,的中點,連結(jié),.
(1)求證:四邊形是菱形;
(2)若四邊形的面積為,求的長;
(3)以其中兩邊為鄰邊構(gòu)造平行四邊形,當所構(gòu)造的平行四邊形恰好是菱形時,這時該菱形的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板如圖放置,E是AB的中點,連接CE、DE、CD,F(xiàn)是CD的中點,連接EF.若AB=8,則S△CEF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,點.已知拋物線(是常數(shù)),頂點為.
(Ⅰ)當拋物線經(jīng)過點時,求頂點的坐標;
(Ⅱ)若點在軸下方,當時,求拋物線的解析式;
(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,直線y=kx+2與坐標軸交于A、B兩點,OA=4,點C是x軸正半軸上的點,且OC=OB,過點C作AB的垂線,交y軸于點D,拋物線y=ax2+bx+c過A、B、C三點.
(1)求拋物線函數(shù)關(guān)系式;
(2)如圖②,點P是射線BA上一動點(不與點B重合),連接OP,過點O作OP的垂線交直線CD于點Q.求證:OP=OQ;
(3)如圖③,在(2)的條件下,分別過P、Q兩點作x軸的垂線,分別交x軸于點E、F,交拋物線于點M、N,是否存在點P的位置,使以P、Q、M、N為頂點的四邊形為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com