【題目】如圖所示,∠MON=45°,點(diǎn)P是∠MON內(nèi)一點(diǎn),過點(diǎn)P作PA⊥OM于點(diǎn)A、PB⊥ON于點(diǎn)B,且PB=2 .取OP的中點(diǎn)C,聯(lián)結(jié)AC并延長,交OB于點(diǎn)D.

(1)求證:∠ADB=∠OPB;
(2)設(shè)PA=x,OD=y,求y關(guān)于x的函數(shù)解析式;
(3)分別聯(lián)結(jié)AB、BC,當(dāng)△ABD與△CPB相似時(shí),求PA的長.

【答案】
(1)

證明:如圖,∵PA⊥OM,CO=CP,

∴CO=CP=CA,

∴∠CAO=∠COA,

過A作AE⊥OB于E,

∵∠MON=45°,

∴∠AOE=∠OAE=45°,

∴∠POB=∠DAE,

∵PB⊥OB,

∴∠ADB=∠OPB


(2)

解:如圖1,

延長BP交OM于F,

∵BP⊥ON,PA⊥OM,

∴∠OBP=∠OAP=90°,

∵∠MON=45°,

∴∠AFB=45°,

在Rt△APF中,AP=x,∠OFB=45°,

∴PF= x,

∴BF=PF+PB= x+2 = (x+2),

在Rt△OBF中,OB=BF= (x+2)

延長AP交ON于G,

同理:PG= PB=4,

∴OA=AG=AP+PG=x+4,

過點(diǎn)A作AE⊥ON,

∴OE=AE= OA= (x+4),

∴DE=OE﹣OD= (x+4)﹣y

由(1)知,∠ADE=∠OPB,

∵∠AED=∠OBP=90°,

∴△ADE∽△OPB,

,

∴y=


(3)

解:如圖2,

在Rt△OAP中,點(diǎn)C是OP中點(diǎn),

∴AC=OC= OP,

在Rt△OBP中,點(diǎn)C是OP中點(diǎn),

∴BC=OC= OP,

∴AC=BC,

∵AC=OC,

∴∠ACP=2∠AOP,

∵OC=BC,

∴∠BCP=2∠BOP,

∴∠ACB=∠ACP+∠BCP=2(∠AOP+∠BOP)=2∠AOB=90°,

∴∠BAC=∠CAB=45°,

∵∠OBP=90°,

∴∠OBC+∠ABP=45°

∵當(dāng)△ABD與△CPB相似時(shí),

∵∠ADB=∠CPB,

∴∠ABD=∠PBC,

∴∠OBC=∠ABP= ×45°=22.5°,

∵OC=BC,

∴∠BOC=∠OBC=22.5°,

∴∠AOP=∠BOP,

∴OP是∠MON的角平分線,

∵PA⊥OM,PB⊥ON,

∴PA=PB=2


【解析】(1)先判斷出∠DAE=∠POB,再利用等角的余角相等即可得出結(jié)論;(2)先利用等腰直角三角形的性質(zhì)得出OB=BF= (x+2),同理得出OA=x+4,即可得出AE,OE,進(jìn)而得出DE,最后用△ADE∽△OPB的比例式建立方程化簡即可得出結(jié)論;(3)先利用直角三角形斜邊的中線等于斜邊的一半和三角形外角的性質(zhì)判斷出△ABC是等腰直角三角形,即可得出∠OBC+∠ABP=45°,再用△ABD與△CPB得出,∠ABD=∠PBC,即∠OBC=∠ABP= ×45°=22.5°,進(jìn)而得出OP是∠MON的平分線即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°,以及對(duì)直角三角形斜邊上的中線的理解,了解直角三角形斜邊上的中線等于斜邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中有一個(gè)黑球a和兩個(gè)白球b,c(除顏色外其他均相同).用樹狀圖(或列表法)解答下列問題:
(1)小麗第一次從袋子中摸出一個(gè)球不放回,第二次又從袋子中摸出一個(gè)球.則小麗兩次都摸到白球的概率是多少?
(2)小強(qiáng)第一次從袋子中摸出一個(gè)球,摸到黑球不放回,摸到白球放回;第二次又從袋子中摸出一個(gè)球,則小強(qiáng)兩次都摸到白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是射線BE上一點(diǎn),過ACABE交射線BF于點(diǎn)C,ADBF交射線BF于點(diǎn)D,給出下列結(jié)論:①∠1是∠B的余角;②圖中互余的角共有3對(duì);③∠1的補(bǔ)角只有∠ACF;④與∠ADB互補(bǔ)的角共有3個(gè).則上述結(jié)論正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+cx軸于E,y軸于F,a,b,c分別滿足:-(a-4)2≥0,c=++8.

(1)直線y=bx+c的解析式為________;正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo)為________;

(2)若正方形OABC沿x軸負(fù)方向以每秒移動(dòng)1個(gè)單位長度的速度平移,設(shè)平移的時(shí)間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由;

(3)點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PMPO,交直線ABM,在備用圖中畫圖分析,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A在射線CE上,∠C=∠D

1)如圖1,若AC∥BD,求證:AD∥BC;

2)如圖2,若∠BAC=∠BAD,BD⊥BC,請(qǐng)?zhí)骄?/span>∠DAE∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;

3)如圖3,在(2)的條件下,過點(diǎn)DDF∥BC交射線于點(diǎn)F,當(dāng)∠DFE=8∠DAE時(shí),求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于受到手機(jī)更新?lián)Q代的影響,某店經(jīng)銷的甲型號(hào)手機(jī)今年的售價(jià)比去年每臺(tái)降價(jià)500元.如果賣出相同數(shù)量的手機(jī),那么去年銷售額為8萬元,今年銷售額只有6萬元.

(1)今年甲型號(hào)手機(jī)每臺(tái)售價(jià)為多少元?

(2)為了提高利潤,該店計(jì)劃購進(jìn)乙型號(hào)手機(jī)銷售,已知甲型號(hào)手機(jī)每臺(tái)進(jìn)價(jià)為1000元,乙型號(hào)手機(jī)每臺(tái)進(jìn)價(jià)為800元,預(yù)計(jì)用不多于1.84萬元且不少于1.76萬元的資金購進(jìn)這兩種手機(jī)共20臺(tái),請(qǐng)問有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是第39個(gè)植樹節(jié),我們提出了“追求綠色時(shí)尚,走向綠色文明”的倡議.某校為積極響應(yīng)這一倡議,立即在八、九年級(jí)開展征文活動(dòng),校團(tuán)委對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿3篇的班級(jí)個(gè)數(shù)所對(duì)應(yīng)的扇形的圓心角的度數(shù).
(2)求該校八、九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)最多的4個(gè)班中,八、九年級(jí)各有兩個(gè)班,校團(tuán)委準(zhǔn)備從這四個(gè)班中選出兩個(gè)班參加全校的表彰會(huì),請(qǐng)你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:|m|=2,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).則2a+2b+(﹣3cd)﹣m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)2﹣13+8;

(2)2+(﹣6)÷2×;

(3)5×22﹣3÷(﹣);

(4)﹣42+(﹣9)×[(﹣2)3+]

查看答案和解析>>

同步練習(xí)冊(cè)答案