【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
⑴ac<0;
⑵當(dāng)x>1時(shí),y的值隨x值的增大而減。
⑶3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
⑷當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】B
【解析】解:(1)由圖表中數(shù)據(jù)可得出:x=1時(shí),y=5,所以二次函數(shù)y=ax2+bx+c開口向下,a<0;又x=0時(shí),y=3,所以c=3>0,所以ac<0,故(1)正確;(2)∵二次函數(shù)y=ax2+bx+c開口向下,且對稱軸為x= =1.5,∴當(dāng)x≥1.5時(shí),y的值隨x值的增大而減小,故(2)錯(cuò)誤;(3)∵x=3時(shí),y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一個(gè)根,故(3)正確;(4)∵x=﹣1時(shí),ax2+bx+c=﹣1,∴x=﹣1時(shí),ax2+(b﹣1)x+c=0,∵x=3時(shí),ax2+(b﹣1)x+c=0,且函數(shù)有最大值,∴當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0,故(4)正確.
所以答案是:B.
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,M,N分別是邊AB、BC的中點(diǎn),E、F是邊AC上的三等分點(diǎn),連接ME、NF且延長后交于點(diǎn)D,連接BE、BF
(1)求證:四邊形BFDE是平行四邊形;(2)當(dāng)△ABC滿足什么條件時(shí)四邊形BFDE是菱形,證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PQ∥MN,點(diǎn)C是PQ、MN之間(不在直線PQ,MN上)的一個(gè)動(dòng)點(diǎn).
(1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數(shù)量關(guān)系;
(2)若把一塊三角尺(∠A=30°,∠C=90°)按如圖乙方式放置,點(diǎn)D,E,F是三角尺的邊與平行線的交點(diǎn),若∠AEN=∠A,求∠BDF的度數(shù);
(3)將圖乙中的三角尺進(jìn)行適當(dāng)轉(zhuǎn)動(dòng),如圖丙,直角頂點(diǎn)C始終在兩條平行線之間,點(diǎn)G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,AB,BC,AC三邊的長分別為、、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格每個(gè)小正方形的邊長為,再在網(wǎng)格中畫出格點(diǎn)的三個(gè)頂點(diǎn)都在正方形的頂點(diǎn)處,如圖所示,這樣不需要求的高,而借用網(wǎng)格就能計(jì)算出它的面積.
請你將的面積直接填寫在橫線上.______
已知,DE、EF、DF三邊的長分別為、、,
是否為直角形,并說明理由.
求這個(gè)三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)時(shí)代新興詞匯層出不窮.為了解大眾對網(wǎng)絡(luò)詞匯的理解,某興趣小組舉行了一個(gè)調(diào)查活動(dòng):選取四個(gè)熱詞A:“硬核人生”,B:“好嗨哦”,C:“雙擊666”,D:“杠精時(shí)代”在街道上對流動(dòng)人群進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位只能勾選一個(gè)最熟悉的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名路人?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出a的值;
(3)請算出扇形圖中的b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③非負(fù)數(shù)就是正數(shù);④不僅是有理數(shù),而且是分?jǐn)?shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).其中錯(cuò)誤的說法的個(gè)數(shù)為( )
A.7個(gè)B.6個(gè)C.5個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BDBC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com