【題目】如圖,四邊形ABCD的對角線AC,BD交于點O,已知O是BD的中點,BE=DF,AF∥CE.
(1)求證:四邊形AECF是平行四邊形;
(2)若OA=OD,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論.
【答案】(1)見解析(2)四邊形ABCD為矩形
【解析】
試題分析:(1)根據(jù)平行線的性質(zhì)推出∠AFO=∠CEO,∠FAO=∠ECO,求出OE=OF,證△AOF≌△COE,推出AF=CE,根據(jù)平行四邊形的判定推出即可;
(2)根據(jù)全等得出OA=OC,求出AC=BD,再根據(jù)平行四邊形和矩形的判定推出即可.
(1)證明:∵AF∥CE,
∴∠AFO=∠CEO,∠FAO=∠ECO,
∵O為BD的中點,即OB=OD,BE=DF,
∴OB﹣BE=OD﹣DF,即OE=OF,
在△AOF和△COE中
∴△AOF≌△COE(AAS),
∴AF=CE,
∵AF∥CE,
∴四邊形AECF是平行四邊形;
(2)若OA=OD,則四邊形ABCD是矩形,
證明:∵△AOF≌△COE,
∴OA=OC,
∵OB=OD,
∴四邊形ABCD是平行四邊形.
∵OA=OD,∴OA=OB=OC=OD,即BD=AC,
∴四邊形ABCD為矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(﹣2,﹣3)向左平移m個單位長度,再向上平移n個單位長度所得對應(yīng)點Q(﹣3,0),則m+n的值為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx﹣3經(jīng)過點(2,4),則代數(shù)式8a+4b+1的值為( )
A.3
B.9
C.15
D.﹣15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖長方形OABC的位置如圖所示,點B的坐標(biāo)為(8,4),點P從點C出發(fā)向點O移動,速度為每秒1個單位;點Q同時從點O出發(fā)向點A移動,速度為每秒2個單位,設(shè)運動時間為t(0≤t≤4)
(1)填空:點A的坐標(biāo)為 ,點C的坐標(biāo)為 ,點P的坐標(biāo)為 (用含t的代數(shù)式表示)
(2)當(dāng)t為何值時,P、Q兩點與原點距離相等?
(3)在點P、Q移動過程中,四邊形OPBQ的面積是否變化?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式a2b﹣b3結(jié)果正確的是( )
A.b(a+b)(a﹣b)
B.b(a﹣b)2
C.b(a2﹣b2)
D.b(a2+b2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國質(zhì)檢總局規(guī)定,針織內(nèi)衣等直接接觸皮膚的制品,每千克的衣物上甲醛含量應(yīng)在0.000075千克以下.將0.000075用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為比較兩條線段AB與CD的大小,小明將點A與點C重合使兩條線段在一條直線上,點B在CD的延長線上,則( )
A. AB<CD B. AB>CD C. AB=CD D. 以上都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘船從甲碼頭到乙碼頭順流行駛用4小時;從乙碼頭到甲碼頭逆流行駛用5小時。已知水流速度為3千米/小時,則船在靜水中的平均速度是 ( )
A. 6千米/小時 B. 9千米/小時 C. 27千米/小時 D. 54千米/小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P為正方形ABCD外的一點,PA=1,PB=2,將△ABP繞點B順時針旋轉(zhuǎn)90°,使點P旋轉(zhuǎn)至點P′,且AP′=3,則∠BP′C的度數(shù)為 ( )
A.105° B.112.5° C.120° D.135°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com