以正方形ABCD的BC邊為直徑作半圓O,過(guò)點(diǎn)D作直線切半圓于點(diǎn)F,交AB邊于點(diǎn)E.則三角形ADE和直角梯形EBCD周長(zhǎng)之比為( )

A.3:4
B.4:5
C.5:6
D.6:7
【答案】分析:設(shè)EF=x,DF=y,在△ADE中根據(jù)勾股定理可得列方程,從而得到三角形ADE的周長(zhǎng)和直角梯形EBCD周長(zhǎng),從而可求得兩者周長(zhǎng)之比.
解答:解:根據(jù)切線長(zhǎng)定理得,BE=EF,DF=DC=AD=AB=BC.
設(shè)EF=x,DF=y,
則在直角△AED中,AE=y-x,AD=CD=y,DE=x+y.
根據(jù)勾股定理可得:
(y-x)2+y2=(x+y)2
∴y=4x,
∴三角形ADE的周長(zhǎng)為12x,直角梯形EBCD周長(zhǎng)為14x,
∴兩者周長(zhǎng)之比為12x:14x=6:7.
故選D.
點(diǎn)評(píng):此題考查圓的切線長(zhǎng)定理,正方形的性質(zhì)和勾股定理等知識(shí),解答本題關(guān)鍵是運(yùn)用切線長(zhǎng)定理得出EB=EF,DF=DC,從而求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:△AEC是以正方形ABCD的對(duì)角線為邊的等邊三角形,EF⊥AB,交AB延長(zhǎng)線于F,則∠BEF度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,如果以正方形ABCD的對(duì)角線AC為邊作第二個(gè)正方形ACEF,再以AE為邊作第三個(gè)正方形AEGM,…已知正方形ABCD的面積S1=1,按上述方法所作的正方形的面積依次為S2,S3,…Sn(n為正整數(shù)),那么第8個(gè)正方形面積S8=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,以正方形ABCD的邊AB為直徑,在正方形內(nèi)部作半圓,圓心為O,DF切半圓于E,交A精英家教網(wǎng)B的延長(zhǎng)線于點(diǎn)F,BF=4.
(1)求證:△EFO∽△AFD,并求
FEFA
的值;
(2)求cos∠F的值;
(3)求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、以正方形ABCD的頂點(diǎn)D為原點(diǎn),以邊CD所在的直線為x軸,以邊AD所在的直線為y軸,建立平面直角坐標(biāo)系.若此正方形的邊長(zhǎng)為4,寫(xiě)出A、B、C三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,以正方形ABCD的對(duì)角線為邊作菱形AEFC,B在FE的延長(zhǎng)線上.
求證:AE、AF把∠BAC三等分.

查看答案和解析>>

同步練習(xí)冊(cè)答案