【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

A.等邊三角形B.平行四邊形C.正五邊形D.

【答案】D

【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.

解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A錯誤;

B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B錯誤;

C、正五邊形是軸對稱圖形,不是中心對稱圖形,故C錯誤;

D、圓是軸對稱圖形,也是中心對稱圖形,故D正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(a4b)2÷a2的結(jié)果是(
A.a2 b2
B.a6 b2
C.a7 b2
D.a8 b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點A、點B的坐標(biāo)分別為(4,0)、(0,3).

(1)AB的長度.

(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點C的坐標(biāo).

(3)x軸上是否存一點P,使得⊿ABP是等腰三角形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對居民天然氣收費采用階梯氣價,以“年度”作為一個階梯氣價結(jié)算周期,年度用氣量分檔和價格如下:第一檔:年用氣量0~242(含)立方米,價格a元/立方米,第二檔:年用氣量242~360(含)立方米,價格b元/立方米,即年用氣量超過242度,超出部分氣價按b元收費,某戶居民一年用天然氣300立方米,該戶居民這一年應(yīng)交納天然氣費是_____元.(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明打算用一塊面積為900cm2的正方形木板,沿著邊的方向裁出一個長方形面積為588cm2桌面,并且的長寬之比為4:3,你認(rèn)為能做到嗎?如果能,計算出桌面的長和寬;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ADBC于點D,BC=12cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB,AC,AD于E,F(xiàn),H,當(dāng)點P到達(dá)點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t0).

(1)連接DE、DF,當(dāng)t為何值時,四邊形AEDF為菱形?

(2)連接PE、PF,在整個運動過程中,PEF的面積是否存在最大值?若存在,試求當(dāng)PEF的面積最大時,線段BP的長.

(3)是否存在某一時刻t,使點F在線段EP的中垂線上?若存在,請求出此時刻t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.

1請寫出一個你學(xué)過的特殊四邊形中是等對邊四邊形的圖形的名稱;

2如圖,在中,點分別在上,設(shè)相交于點,若,.請你寫出圖中一個與相等的角,并猜想圖中哪個四邊形是等對邊四邊形;

3中,如果是不等于的銳角,點分別在上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標(biāo)是(﹣3,2).

(1)將△ABC向右平移6個單位長度,再向下平移4個單位長度,得到△A'B′C′.請畫出平移后的△A′B′C′,并寫出點的坐標(biāo)A′、B、C′

(2)求出△A′B′C′的面積;
(3)若連接AA′、CC′,則這兩條線段之間的關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲間距離的最大值為(

A.5 B.6 C.7 D.10

查看答案和解析>>

同步練習(xí)冊答案