【題目】如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度.Rt△ABC的三個(gè)頂點(diǎn)A(﹣2,2),B(0,5),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出的圖形△A1B1C.

(2)平移△ABC,使點(diǎn)A的對應(yīng)點(diǎn)A2坐標(biāo)為(﹣2,﹣6),請畫出平移后對應(yīng)的△A2B2C2

(3)請用無刻度的直尺在第一、四象限內(nèi)畫出一個(gè)以A1B1為邊,面積是7的矩形A1B1EF.(保留作圖痕跡,不寫作法)

(4)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

【答案】(1)(2)(3)詳見解析;(4)(0,﹣2).

【解析】

(1)利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點(diǎn)坐標(biāo),再順次連接即可;(2)利用平移規(guī)律得出對應(yīng)點(diǎn)的坐標(biāo),再順次連接即可;(3)如圖,根據(jù)勾股定理求得A1B1= ;以A1B1為邊,在一、四象限內(nèi)作正方形,可得所作正方形的面積為13;根據(jù)相似三角形的判定方法可判定△A1B1C∽△MB1O,由相似三角形的性質(zhì)可得,即,求得OM=;又因ON=3,所以MN=ON-OM=,即可得,根據(jù)網(wǎng)格的特征,過點(diǎn)NA1B1的平行線,交所作正方形的兩邊分別為點(diǎn)E、F(如圖)根據(jù)平行線分線段成比例定理可得,所以直線EF把所作正方形的面積分成兩個(gè)矩形的面積比為6:7,即矩形A1B1EF的面積是7;(4)利用旋轉(zhuǎn)圖形的性質(zhì),連接對應(yīng)點(diǎn),即可得出旋轉(zhuǎn)中心的坐標(biāo).

(1)如圖所示,△A1B1C即為所求;

(2)如圖所示,△A2B2C2即為所求;

(3)如圖所示,矩形A1B1EF即為所求;

(4)旋轉(zhuǎn)中心坐標(biāo)(0,﹣2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用無刻度的直尺繪圖.

1)如圖1,在中,AC為對角線,AC=BC,AE△ABC的中線.畫出△ABC的高CH

2)如圖2,在直角梯形中,,AC為對角線,AC=BC,畫出△ABC的高CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點(diǎn)A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點(diǎn)P為直線l上一動點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對應(yīng)點(diǎn),點(diǎn)C,C'是對應(yīng)點(diǎn)).請問:是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點(diǎn)A'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1已知如圖1,等腰直角三角形ABC,B=90°,AD是∠BAC的外角平分線,CB邊的延長線于點(diǎn)D

求證BD=AB+AC

2)對于任意三角形ABC,ABC=2∠C,AD是∠BAC的外角平分線CB邊的延長線于點(diǎn)D,如圖2,請你寫出線段ACAB、BD之間的數(shù)量關(guān)系并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與直線AB:y=x+相交于點(diǎn)A(1,0)和B(t,),直線ABy軸于點(diǎn)C.

(1)求拋物線的解析式及其對稱軸;

(2)點(diǎn)Dx軸上的一個(gè)動點(diǎn),連接BD、CD,請問△BCD的周長是否存在最小值?若存在,請求出點(diǎn)D的坐標(biāo),并求出周長最小值;若不存在,請說明理由.

(3)設(shè)點(diǎn)M是拋物線對稱軸上一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A、B、M、N為頂點(diǎn)的四邊形是否可能為矩形?若能,請求出點(diǎn)M的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.

1)如圖1,若點(diǎn)的坐標(biāo)為,是等腰直角三角形,,,求點(diǎn)坐標(biāo);

2)如圖2,若點(diǎn)的中點(diǎn),求證:;

3)如圖3是等腰直角三角形,,,是等邊三角形,連接,若,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明利用等腰直角三角板測量旗桿高度的示意圖.等腰直角三角板的斜邊BD與地面AF平行,當(dāng)小明的視線恰好沿BC經(jīng)過旗桿頂部點(diǎn)E時(shí),測量出此時(shí)他所在的位置點(diǎn)A與旗桿底部點(diǎn)F的距離為10米.如果小明的眼睛距離地面1.7米,那么旗桿EF的高度為( 。

A. 10米 B. 11.7米 C. 10 D. (5+1.7)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m+1)x2﹣2(m+1)x﹣m+3.

(1)求該二次函數(shù)的對稱軸;

(2)過動點(diǎn)C(0,n)作直線l⊥y軸,當(dāng)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí),求n關(guān)于m的函數(shù)表達(dá)式;

(3)若對于每一個(gè)給定的x值,它所對應(yīng)的函數(shù)值都不大于6,求整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案