【題目】如圖,直線AB與直線BC交于B點(diǎn),∠ABC=n°(n>110),直線EF與直線AB交于點(diǎn)G,與直線BC交于H點(diǎn),∠AGE=70°,將EF向右平移,在平移的過程中,∠GHC=_______°(用含n的式子表示)
【答案】n-70或250-n
【解析】
根據(jù)三角形外角的性質(zhì),分當(dāng)H在直線AB下方時,當(dāng)H在直線AB上方時兩種情況解答即可.
解:在平移過程中,
當(dāng)H在直線AB下方時,如圖,
∵∠ABC=∠GHC+∠HGB=∠GHC+∠AGE,∠AGE=70°,∠ABC=n°,
∴∠GHC=∠ABC-∠AGE=n°-70°;
當(dāng)H在直線AB上方時,如圖,
∵∠ABC=∠AGE +∠BHG,
∠GHC=∠AGE+∠CBG,
∠AGE=70°,∠ABC=n°,
∴∠ABC+∠GHC=∠AGE +∠BHG+∠AGE+∠CBG=180°+∠AGE=180°+70°=250°,
∴∠GHC=∠ABC-∠AGE=250°-n°;
故答案為:n-70或250-n.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB∥CD,C在 D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點(diǎn) E.∠ADC=70°.
(1)求∠EDC 的度數(shù);
(2)若∠ABC=30°,求∠BED 的度數(shù);
(3)將線段 BC沿 DC方向移動,使得點(diǎn) B在點(diǎn) A的右側(cè),其他條件不變,若∠ABC=n°,請直接寫出∠BED 的度數(shù)(用含 n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,動點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD,DA運(yùn)動到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是( 。
A. 10B. 16C. 20D. 36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、F在線段AB上,點(diǎn)E、G分別在線段BC和AC上,CD∥EF,∠1=∠2.
(1)判斷DG與BC的位置關(guān)系,并說明理由;
(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,AB與CD有怎樣的位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E,PC=8,則PD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A和點(diǎn)C分別在直線MN和直線EF上,點(diǎn)B在直線外,∠BAN=α,∠BCF=β.
(1)如圖1,若MN∥EF,則∠B= (用α,β的式子表示,不寫證明過程)
(2)在(1)的條件下,點(diǎn)T在直線MN與直線EF之間,∠MAT=∠BAN,∠TCB=2∠TCE,求∠B與∠T之間的數(shù)量關(guān)系.
(3)如圖2,若MN不平行于EF,直線AC平分∠MAB,且平分∠ECB,則∠B= (用α,β的式子表示,不寫證明過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)行學(xué)案式教學(xué),需印制若干份教學(xué)學(xué)案.印刷廠有,甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要,兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示.
(1)填空:甲種收費(fèi)方式的函數(shù)關(guān)系式是__________,乙種收費(fèi)方式的函數(shù)關(guān)系式是__________.
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,邊厘米,若動點(diǎn)從點(diǎn)開始,按的路徑運(yùn)動,且速度為1厘米/秒,設(shè)點(diǎn)的運(yùn)動時間為秒.
(1)當(dāng)時,判斷與的位置關(guān)系,并說明理由;
(2)當(dāng)的面積為面積的一半時,求的值;
(3)另有一點(diǎn),從點(diǎn)開始,按的路徑運(yùn)動,且速度為厘米/秒,若、兩點(diǎn)同時出發(fā),當(dāng)、中有一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.當(dāng)為何值時,直線把的周長分成相等的兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點(diǎn)對稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com