如圖所示⊙O中,已知∠BAC=∠CDA=20°,則∠ABO的度數(shù)為     
50°

試題分析:連接OA,

由題意得,∠AOB=2(∠ADC+∠BAC)=80°。
∵OA=OB(都是半徑),
∴∠ABO=∠OAB=(180°﹣∠AOB)=50°。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,CD與⊙O相切于點C,DA⊥AB,DO及DO的延長線與⊙O分別相交于點E、F,EB與CF相交于點G.

(1)求證:DA=DC;
(2)⊙O的半徑為3,DC=4,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為BC的中點.

(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一條公路的轉變處是一段圓。磮D中弧CD,點O是弧CD的圓心),其中CD=600米,E為弧CD上一點,且OE⊥CD,垂足為F,OF=米,則這段彎路的長度為
A.200π米B.100π米C.400π米D.300π米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在⊙O中,弦BC=1.點A是圓上一點,且∠BAC=30°,則⊙O的半徑是
A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在等腰直角三角形ABC中,AB=AC=4,點O為BC的中點,以O為圓心作⊙O交BC于點M、N,⊙O與AB、AC相切,切點分別為D、E,則⊙O的半徑和∠MND的度數(shù)分別為

A.2,22.5°       B.3,30°      C.3,22.5°      D.2,30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2013年四川自貢4分)如圖,點O是正六邊形的對稱中心,如果用一副三角板的角,借助點O(使該角的頂點落在點O處),把這個正六邊形的面積n等分,那么n的所有可能取值的個數(shù)是【   】
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年廣東梅州8分)如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=2.

(1)求線段EC的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在圓中,30°的圓周角所對的弦的長度為,則這個圓的半徑是   

查看答案和解析>>

同步練習冊答案