A. | y=$\frac{3}{4}$x | B. | y=$\frac{2}{3}$x | C. | y=$\frac{4}{3}$x | D. | y=$\frac{5}{6}$x |
分析 如圖,過點(diǎn)A作AD⊥y軸于點(diǎn)D.根據(jù)一次函數(shù)解析式求得點(diǎn)B、C的坐標(biāo),結(jié)合等腰三角形的性質(zhì)可以求得點(diǎn)D的坐標(biāo);通過銳角三角函數(shù)的定義求得點(diǎn)A的坐標(biāo);最后把點(diǎn)A的坐標(biāo)代入正比例函數(shù)解析式y(tǒng)=kx即可求得k的值.
解答 解:設(shè)正比例函數(shù)解析式y(tǒng)=kx.
∵y=-$\frac{2}{3}$x-4,
∴B(0,-4),C(-6,0).
∴OC=6,OB=4.
如圖,過點(diǎn)A作AD⊥y軸于點(diǎn)D.
又∵AO=AB,
∴OD=BD=2.
∴tan∠CBO=$\frac{OC}{OB}$=$\frac{AD}{BD}$,即$\frac{6}{4}$=$\frac{AD}{2}$,
解得AD=3.
∴A(-3,-2).
把點(diǎn)A的坐標(biāo)代入y=kx,得
-2=-3k,
解得k=$\frac{2}{3}$.
故該函數(shù)解析式為:y=$\frac{2}{3}$x.
故選:B.
點(diǎn)評 本題考查了待定系數(shù)法求一次函數(shù)解析式.注意:①求點(diǎn)的坐標(biāo)的方法是先求出這點(diǎn)到兩坐標(biāo)軸的距離,然后根據(jù)這點(diǎn)在坐標(biāo)系中的位置寫出這點(diǎn)的坐標(biāo).
②以后學(xué)了等腰三角形的性質(zhì)后,作垂線后可直接得到OD=BD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -$\frac{1}{2}$ | C. | -1 | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.05 | B. | 0.95 | C. | 1 | D. | 15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com