【題目】甲、乙兩車從城出發(fā)勻速行駛至城在個(gè)行駛過程中甲乙兩車離開城的距離(單位:千米)與甲車行駛的時(shí)間(單位:小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論: ①兩城相距千米;②乙車比甲車晚出發(fā)小時(shí),卻早到小時(shí);③乙車出發(fā)后小時(shí)追上甲車;④在乙車行駛過程中.當(dāng)甲、乙兩車相距千米時(shí),,其中正確的結(jié)論是_________.

【答案】①②

【解析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時(shí)間t的關(guān)系式,可求得兩函數(shù)圖象的交點(diǎn),可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,進(jìn)而得出答案.

由圖象可知,A.B兩城市之間的距離為300km,甲行駛的時(shí)間為5小時(shí),而乙是在甲出發(fā)1小時(shí)后出發(fā)的,且用時(shí)3小時(shí),即比甲早到1小時(shí),

∴①②都正確;

設(shè)甲車離開A城的距離yt的關(guān)系式為y=kt

(5,300)代入可求得,k=60,

y=60t,

設(shè)乙車離開A城的距離yt的關(guān)系式為y=mt+n,

(1,0)(4,300)代入可得

解得

y=100t100

y=y乙可得:60t=100t100,

解得t=2.5,

即甲、乙兩直線的交點(diǎn)橫坐標(biāo)為t=2.5,

此時(shí)乙出發(fā)時(shí)間為1.5小時(shí),即乙車出發(fā)1.5小時(shí)后追上甲車,

∴③不正確;

|yy|=50,可得|60t100t+100|=50,即|10040t|=50,

當(dāng)10040t=50時(shí),可解得t=,

當(dāng)10040t=50時(shí),可解得t=,

又當(dāng)t=時(shí),y=50,此時(shí)乙還沒出發(fā),

當(dāng)t=時(shí),乙到達(dá)B,y=250;

綜上可知當(dāng)t的值為t=時(shí),兩車相距50千米,

∴④不正確;

綜上,正確的有①②,

故答案為:①②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

)請(qǐng)直接寫出袋子中白球的個(gè)數(shù).

)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A(6 ,0),點(diǎn)B(0,18),BAO=60°,射線AC平分∠BAOy軸正半軸于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)點(diǎn)N從點(diǎn)A以每秒2個(gè)單位的速度沿線段AC向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)Nx軸的垂線,分別交線段AB于點(diǎn)M,交線段AO于點(diǎn)P,設(shè)線段MP的長(zhǎng)度為d,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,請(qǐng)求出dt的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍)

(3)(2)的條件下,將△ABO沿y軸翻折,點(diǎn)A落在x軸正半軸上的點(diǎn)E,線段BE交射線AC于點(diǎn)D,點(diǎn)Q為線段OB上的動(dòng)點(diǎn),當(dāng)△AMN與△OQD全等時(shí),求出t值并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為災(zāi)區(qū)開展了獻(xiàn)出我們的愛賑災(zāi)捐款活動(dòng),九年級(jí)(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動(dòng),因不慎,表中數(shù)據(jù)有一處被墨水污染,已無法看清,但已知全班平均每人捐款38.

捐款(元)

10

15

30

50

60

人數(shù)

3

6

11

11

13

6

1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為 .

2)該班捐款金額的眾數(shù)為 ,中位數(shù)為 .

3)如果用九年級(jí)(1)班捐款情況作為一個(gè)樣本,請(qǐng)估計(jì)全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)碼產(chǎn)品專賣店的一塊攝像機(jī)支架如圖所示,將該支架打開立于地面MN上,主桿AC與地面垂直,調(diào)節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時(shí)支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點(diǎn)A到調(diào)節(jié)旋鈕B的距離為40cm.支架CD的長(zhǎng)度為30cm,旋轉(zhuǎn)鈕D是腳架BE的中點(diǎn),求腳架BE的長(zhǎng)度和支架最高點(diǎn)A到地面的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣x2+2x+6與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其對(duì)稱軸與拋物線交于點(diǎn)D.與x軸交于點(diǎn)E.

(1)求點(diǎn)A,B,D的坐標(biāo);

(2)點(diǎn)G為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),從點(diǎn)D出發(fā),沿直線DE以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)C作x軸的平行線交拋物線于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊).

設(shè)點(diǎn)G的運(yùn)動(dòng)時(shí)間為ts.

①當(dāng)t為何值時(shí),以點(diǎn)M,N,B,E為頂點(diǎn)的四邊形是平行四邊形;

②連接BM,在點(diǎn)G運(yùn)動(dòng)的過程中,是否存在點(diǎn)M.使得∠MBD=∠EDB,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)點(diǎn)Q為坐標(biāo)平面內(nèi)一點(diǎn),以線段MN為對(duì)角線作萎形MENQ,當(dāng)菱形MENQ為正方形時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx4x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰RtOAB,并將RtAOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線yx4上時(shí),RtOAB掃過的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx2+6mxnm0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),頂點(diǎn)為C,拋物線與y軸交于點(diǎn)D,直線BCy軸于ESABC:SAEC = 23

1)求點(diǎn)A的坐標(biāo);

2)將ACO繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)AB重合,此時(shí)點(diǎn)O恰好也在y軸上,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案