(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.
【答案】分析:依題意,水減少的體積是y,水位下降的高度為x.水位隨著水減少而下降,并且飲水桶是圓柱形,則兩者之間是正比例函數(shù).
解答:解:水減少的體積是y,水位下降的高度是x,水減少的體積隨著水位下降的高度的增加而增加,并且飲水桶是圓柱形,
因而水減少的體積隨著水位下降的高度應(yīng)成正比,是正比例函數(shù).
故選C.
點(diǎn)評(píng):本題考查動(dòng)點(diǎn)問題的函數(shù)圖象問題.注意分析y隨x的變化而變化的趨勢(shì),而不一定要通過求解析式來解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(01)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-4),與x軸交于A、B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線的對(duì)稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(Q與A、B兩點(diǎn)不重合),過點(diǎn)Q作QF⊥AE于F,QG⊥DB于G,請(qǐng)判斷是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說明理由;
(3)在(2)的條件下,若點(diǎn)H是線段EQ上一點(diǎn),過點(diǎn)H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請(qǐng)判斷是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省涼山州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-4),與x軸交于A、B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線的對(duì)稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(Q與A、B兩點(diǎn)不重合),過點(diǎn)Q作QF⊥AE于F,QG⊥DB于G,請(qǐng)判斷是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說明理由;
(3)在(2)的條件下,若點(diǎn)H是線段EQ上一點(diǎn),過點(diǎn)H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請(qǐng)判斷是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市海淀區(qū)中考數(shù)學(xué)試卷(2)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案