【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2

(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?

【答案】圍成矩形長(zhǎng)為30m,寬為25 m時(shí),能使矩形面積為750㎡。

不能。

【解析】

試題(1)設(shè)所圍矩形ABCD的長(zhǎng)ABx米,則寬AD米,根據(jù)矩形面積的計(jì)算方法列出方程求解;(2)假使矩形面積為810米,則方程無實(shí)數(shù)根,所以不能圍成矩形場(chǎng)地.

試題解析:(1)設(shè)所圍矩形ABCD的長(zhǎng)ABx米,則寬AD米.

依題意,得,即.

解此方程,得x1=30x2=50.

墻的長(zhǎng)度不超過45m,∴x2=50不合題意,應(yīng)舍去.

當(dāng)x=30時(shí),.

答:當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2

2)不能.理由如下:

,

方程沒有實(shí)數(shù)根.

不能使所圍矩形場(chǎng)地的面積為810m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬時(shí),拱頂與水面距離為.

1)請(qǐng)你在圖(2)中,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使該拋物線拱橋的函數(shù)關(guān)系式符合形式,并求此時(shí),函數(shù)關(guān)系式;

2)當(dāng)水面上升時(shí),求水面寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4ab0;②c0;③﹣3b+4c0;④4a2bat2+btt為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),(﹣,y3)是該拋物線上的點(diǎn),則y1y2y3,其中正確的結(jié)論有(  )

A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點(diǎn)E,下列說法正確的有(  )

①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過正方形ABCD頂點(diǎn)B,C的⊙OAD相切于點(diǎn)E,與CD相交于點(diǎn)F,連接EF

1)求證:EF平分∠BFD

2)若tanFBC,DF,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;

(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;

(3)當(dāng)這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,Cx軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點(diǎn)D,連接CD,過點(diǎn)DDECDOA于點(diǎn)E

(1)求點(diǎn)D的坐標(biāo);

(2)求證:△ADE≌△BCD

(3)拋物線yx2x+8經(jīng)過點(diǎn)A、C,連接AC.探索:若點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作平行于y軸的直線交AC于點(diǎn)M.是否存在點(diǎn)P,使線段MP的長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案