12.如圖,∠1=∠3=60°,∠2=120°,可以判斷哪些直線平行?說明理由.

分析 直接利用平行線的判定方法,同旁內(nèi)角互補(bǔ),兩直線平行,進(jìn)而分別得出答案.

解答 解:AB∥DC,AE∥FC,
理由:∵∠3=60°,∠2=120°,
∴∠2+∠3=180°,
∴AB∥DC,
∵∠2=120°,
∴∠AOF=120°,
∴∠1+∠2=180°,
∴AE∥FC.

點評 此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.定義一種新運(yùn)算:x⊕y=$\frac{x+2y}{2}$,如:2⊕1=$\frac{2+2×1}{2}$=2,則(3⊕5)⊕(-2)=$\frac{5}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四邊形ABCD是平行四邊形,若點E,F(xiàn)分別在邊BC,AD上,連接AE,CF,請再從下列三個備選條件中,選擇一個恰當(dāng)?shù)臈l件,使四邊形AECF是平行四邊形,畫出符合要求的示意圖,并予以證明.
備選條件:AE=CF,BE=DF,∠AEB=∠CFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.按如圖所示的程序計算,若開始輸入的n值為 $\sqrt{2}$,則最后輸出的結(jié)果是( 。 
A.14B.16C.8+5$\sqrt{2}$D.14+$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在正方形ABCD中,BD是一條對角線,點P在射線CD上(與點C、D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,過點Q作QH⊥BD于H,連接AH,PH,若點P在線段CD上,如圖1.
(1)①依題意補(bǔ)全圖1;
②判斷AH與PH的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(2)若點P在線段CD的延長線上,且∠AHQ=150°,正方形ABCD的邊長為1,請寫出求DP長的思路,(可以不寫出計算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.對于有理數(shù)a、b,定義運(yùn)算:“*”,a*b=ab-2,如2*(-1)=2×(-1)-2=-4.
(1)計算:5*(-3)=-17,(-3)*5=-17;
(2)交換律在這種運(yùn)算中成立嗎?如果成立,請用字母表示這個運(yùn)算律,如果不成立,請舉例說明;
(3)結(jié)合律在這種運(yùn)算中成立嗎?請舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,A,B,C三點在⊙O上,∠ABC=25°,則∠AOC等于( 。
A.25°B.50°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算:
(1)-20+(-14)-(-18)-13    
(2)(-48)÷8-(-5)×(-6)
(3)(-3)2×5-(-3)2÷9
(4)-22+8÷(-2)3-2×($\frac{1}{8}$-$\frac{1}{2}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.有8,2,0,-4,5的卡片(除數(shù)字不同以外,其余都相同),現(xiàn)從中任意取出一張卡片,則該卡片上的數(shù)字是負(fù)數(shù)的概率是$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案