【題目】為美化市容市貌,我市在春節(jié)前夕計(jì)劃在市區(qū)幾個(gè)公園建造兩種型號花燈供市民觀賞,根據(jù)預(yù)算,共需資金萬元.若建造一個(gè)種花燈和兩個(gè)類種花燈共 需資金萬元;建造兩個(gè)種花燈和一個(gè)種花燈共需資金萬元.

(1)問建造一個(gè)種型號花燈和一個(gè)種型號花燈所需資金分別是多少萬元?

(2)若建造種型號花燈不超過個(gè),則種型號花燈至少要建造多少個(gè)?

【答案】(1)建造一個(gè)種型號花燈和一個(gè)種型號花燈所需的資金分分別為萬元和萬元;(2B種型號花燈至少要建造 12個(gè)

【解析】

1)可根據(jù)若建造一個(gè)種花燈和兩個(gè)類種花燈共 需資金萬元;建造兩個(gè)種花燈和一個(gè)種花燈共需資金萬元,列出方程組求出答案;

2)根據(jù)共需資金萬元”“ 建造種型號花燈不超過個(gè),進(jìn)行判斷即可.

解:(1)建造一個(gè)種型號花燈和一個(gè)種型號花燈所需的資金分別為萬元和萬元.

依題意得:

解得:,

答:建造一個(gè)種型號花燈和一個(gè)種型號花燈所需的資金分分別為萬元和萬元;

2)設(shè)要建造一個(gè)種型號花燈個(gè),建造種型號花燈個(gè).

,

A種型號花燈不超過個(gè),

,

,

答:B種型號花燈至少要建造 12個(gè);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y),從加熱開始計(jì)算的時(shí)間為xmin).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃

1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,邊長為的等邊三角形的頂點(diǎn)分別在上,下列結(jié)論:,其中正確的序號是(  )

A.①②④B.①②C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )

A.石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點(diǎn)A1,

1)分別計(jì)算:當(dāng)∠A分別為700、800時(shí),求∠A1的度數(shù).

2)根據(jù)(1)中的計(jì)算結(jié)果,寫出∠A與∠A1之間的數(shù)量關(guān)系___________________.

3)∠A1BC的角平分線與∠A1CD的角平分線交于點(diǎn)A2,∠A2BC的角平分線與∠A2CD的角平分線交于點(diǎn)A3,如此繼續(xù)下去可得A4,∠An,請寫出∠A5與∠A的數(shù)量關(guān)系_________________.

4)如圖2,若EBA延長線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí),有下面兩個(gè)結(jié)論:①∠Q+A1的值為定值;②∠D-A1的值為定值.

其中有且只有一個(gè)是正確的,請寫出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的兩條切線,,交,設(shè),,

1)求的函數(shù)關(guān)系式;

2)若的兩實(shí)根,求,的值;

3)在(2)的前提下,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解答過程:如圖甲,ABCD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.

解:過點(diǎn)PPEAB

ABCD,

PEABCD(平行于同一條直線的兩條直線互相平行).

∴∠1+A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

2+C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).

∴∠1+A+2+C=360°.

又∵∠APC=1+2,

∴∠APC+A+C=360°.

如圖乙和圖丙,ABCD,請根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】誰更合理?

某種牙膏上部圓的直徑為2.6cm,下部底邊的長為4cm,如圖,現(xiàn)要制作長方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長,他們制作的邊長如下表:

制作者

小明

小亮

小麗

小芳

正方形的邊長

2cm

2.6cm

3cm

3.4cm

1)這4位同學(xué)制作的盒子都能裝下這種牙膏嗎?(

2)若你是牙膏廠的廠長,從節(jié)約材料又方便取放牙膏的角度來看,你認(rèn)為誰的制作更合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與直線分別交于點(diǎn)、,且,、分別是上兩點(diǎn),連接,.

1)試說明:

2)如果,,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案